• Title/Summary/Keyword: viscoelastic model

Search Result 505, Processing Time 0.025 seconds

A Study on the Dynamic Characteristics of Free-Friction Stroke Damper by Finite Element Method (유한요소법을 이용한 Free-Friction Stroke 댐퍼의 동특성 해석)

  • Ku, Hi-Chun;Lee, Jae-Wook;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1417-1426
    • /
    • 2009
  • Various types of damper are usually applied to reduce noise and vibration for mechanical systems. Especially, for washing machines, the free-friction stroke damper is installed. The behavior of the free-friction stroke damper has nonlinear characteristics such as hysteresis and viscoelastic properties because of its foam material. First of all, the dynamic experiments were carried out by using a MTS machine to find characteristics of the free-friction stroke damper. And the simulation model of the free-friction stroke damper and characteristics of a foam material were evaluated by using optimization technique. To make a good simulation model which can show the dynamic characteristics, it is important to understand the working mechanism of the damper. The Finite Element Method (FEM) technique can help us instinctively understand the damping phenomenon under operating conditions, because we can observe the condition of damper at every step in the simulation by using it. Also, by changing factors, we can comprehend the variation of characteristics of damper. So, in this paper, a study on the dynamic characteristics of free-friction stroke damper by FEM is focused on. Finally, the possibility which physical experiments can be replaced into simulations is shown.

A study on vibration characteristics and tuning of smart cantilevered beams featuring an electo-rheological fulid

  • Park, S.B.;Cheong, C.C.;Suh, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.134-141
    • /
    • 1993
  • Electro-Rheological(ER) fluids undergo a phase-change when subjected to an external electic field, and this phase-change typically manifests itself as a many-order-of-magnitude change in the rheological behavior. This phenomenon permits the global stiffness and energy- dissipation properties of the beam structures to be tuned in order to synthesize the desired vibration characteristics. This paper reports on a proof-of-concept experimental investigation focussed on evaluation the vibration properties of hollow cantilevered beams filled with an ER fluid. and consequently deriving an empirical model for predicting field-dependent vibration characteristics. A hydrous-based ER fluid consisting of corn starch and silicone oil is employed. The beams are considered to be uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Natural frequency, damping ratio and elastic modulus are evaluated with respect to the electric field and compared among three different beams: two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Transient and forced vibration responses are examined in time domain to demonstrate the validity of the proposed empirical model and to evaluate the feasibility of using the ERfluid as an actuator in a closed-loop control system.

  • PDF

3-D Axisymmetric Fluid-Structure-Soil Interaction Analysis Using Mixed-Fluid-Element and Infinite-Element (혼합형 유체요소와 무한요소를 이용한 3차원 축대칭 유체-구조물-지반 상호작용해석)

  • 김재민;장수혁;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.257-266
    • /
    • 1999
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure on/in horizontally layered half.space considering the effects of the interior fluid and exterior soil medium in the frequency domain. To capture the essence of fluid-structure-soil interaction effects effectively, a mixed finite element with two-field (u, p) approximation is employed to model the compressive inviscid fluid, while the structure and soil medium are presented by the 3-D axisymmetric finite elements and dynamic infinite elements. The present FE-based method can be applied to the system with complex geometry of fluid region as well as with inhomogeneous near-field soil medium, since it can directly model both the fluid and the soil. For the purpose of verification, dominant peak frequencies in transfer functions for horizontal motions of cylindrical fluid storage tanks with rigid massless foundation on a homogeneous viscoelastic half.space are compared with those by two different added mass approaches for the fluid motion. The comparison indicates that the Present FE-based methodology gives accurate solution for the fluid-structure-soil interaction problem. Finally, as a demonstration of versatility of the present study, a seismic analysis for a real-scale LNG storage tank embedded in layered half.space is carried out, and its member forces along the height of the structure are compared with those by an added mass approach developed by the present writers.

  • PDF

Analysis of the Vibration Damping of a Single Lap Joint Beam with Partial Dampers (겹침이음부와 부분층댐퍼가 부착된 보의 진동감쇠해석)

  • 박정일;최낙삼
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.26-35
    • /
    • 1999
  • This paper presents the vibration damping characteristic of a single lap joint beam with partial dampers analyzed using the model strain energy method and the harmonic response analysis which were based on a finite element model. The two finite element analysis methods exhibited very similar results of the resonant frequency and system loss factor which were comparable to those by the theoretical analysis. Effects of the location of partial dampers and elastic moduli and thickness of their layers on the system loss factor were studied. The damping effects due to changes of modules and loss factor of the viscoelastic layer in lap joint and partial dampers were also studied. Consequently, the geometrical and material conditions at maximizing the system loss factor were suggested.

  • PDF

Creep and Recovery Properties of Mat-type Rice Seedlings (Mat 묘(苗)의 크리이프 및 회복특성(回復特性))

  • Huh, Y.K.;Yi, C.K.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.3
    • /
    • pp.181-187
    • /
    • 1989
  • The mechanical and rheological properties of agricultural materials which influence the machine design or handling are not completely understood. Agricultural materials do not react in a purely elastic manner, and their responses when subjected to stress and strain appear a combination of elastic and viscous behavior. Many researchers have studied the mechanical and rheological properties of the various agricultural materials, but those properties are available mostly for foreign varieties of agricultural products. Rheological properties of rice seedlings become important to formulate the principles governing their mechanical behavior. The objectives of this study were to experimentally determine the creep and recovery behavior of rice seedlings of one japonica-type and one Indica x japonica hybrid in the transplanting age. The results of this study are summarized as follows; 1. The compression creep and recovery behavior of mat-type seedlings could be described by 4-element Burger's model. 2. The steady-state creep appeared at the stress larger than 0.8 MPa and the logarithmic creep appeared at the stress smaller than 0.8 MPa. 3. In the compression creep test of the rice seedlings, the instantaneous elastic modulus of Burger's model showed the range from 20 to 40 MPa. The higher value of absolute viscosity for the rice seedling explained that the rice seedlings were viscoelastic materials. 4. In the recovery test of the rice seedlings, there was a tendency that the higher permanent strain of all samples was observed under the smaller stress being appeared, and the larger permanent strain in Dongjin was observed than in Samkang.

  • PDF

Predictive Study of Hysteretic Rubber Friction Based on Multiscale Analysis (멀티스케일 해석을 통한 히스테리시스 고무 마찰 예측 연구)

  • Nam, Seungkuk;Oh, Yumrak;Jeon, Seonghee
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.378-383
    • /
    • 2014
  • This study predicts the of the hysteretic friction of a rubber block sliding on an SMA asphalt road. The friction of filled rubber on a rough surface is primarily determined by two elements:the viscoelasticity of the rubber and the multi-scale perspective asperities of the road. The surface asperities of the substrate exert osillating forces on the rubber surface leading to energy dissipation via the internal friction of the rubber when rubber slides on a hard and rough substrate. This study defines the power spectra at different length scales by using a high-resolution surface profilometer, and uses rubber and road surface samples to conduct friction tests. I consider in detail the case when the substrate surface has a self affine fractal structure. The theory developed by Persson is applied to describe these tests through comparison with the hysteretic friction coefficient relevant to the energy dissipation of the viscoelastic rubber attributable to cyclic deformation. The results showed differences in the absolute values of predicted and measured friction, but with high correlation between these values. Hence, the friction prediction model is an appropriate tool for separating the effects of each factor. Therefore, this model will contribute to clearer understanding of the fundamental principles of rubber friction.

Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs

  • Farokhian, Ahmad;Kolahchi, Reza
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.555-563
    • /
    • 2020
  • The objective of present paper is assessment of dynamic buckling behavior of an embedded sandwich microplates in thermal environment in which the layers are reinforced through functionally graded carbon nanotubes (FG-CNTs). Therefore, mixture rule is taken into consideration for obtaining effective material characteristics. In order to model this structure much more realistic, Kelvin-Voigt model is presumed and the sandwich structure is rested on visco-Pasternak medium. Exponential shear deformation theory (ESDT) in addition to Eringen's nonlocal theory are utilized to obtain motion equations. Further, differential cubature method (DCM) as well as Bolotin's procedure are used to solve governing equations and achieve dynamic instability region (DIR) related to sandwich structure. Different parameters focusing on volume percent of CNTs, dispersion kinds of CNTs, thermal environment, small scale effect and structural damping and their influences upon the dynamic behavior of sandwich structure are investigated. So as to indicate the accuracy of applied theories as well as methods, the results are collated with another paper. According to results, presence of CNTs and their dispersion kind can alter system's dynamic response as well.

Dynamic stability and structural improvement of vibrating electrically curved composite screen subjected to spherical impactor: Finite element and analytical methods

  • Xiao, Caiyuan;Zhang, Guiju
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.533-552
    • /
    • 2022
  • The current article deals with the dynamic stability, and structural improvement of vibrating electrically curved screen on the viscoelastic substrate. By considering optimum value for radius curvature of the electrically curved screen, the structure improvement of the system occurs. For modeling the electrically system, the Maxwell's' equation is developed. Hertz contact model in employed to obtain contact forces between impactor and structure. Moreover, variational methods and nonlinear von Kármán model are used to derive boundary conditions (BCs) and nonlinear governing equations of the vibrating electrically curved screen. Galerkin and Multiple scales solution approach are coupled to solve the nonlinear set of governing equations of the vibrating electrically curved screen. Along with the analytical solution, 3D finite element simulation via ABAQUS package is provided with the aid of a FE package for simulating the current system's response. The results are categorized in 3 different sections. First, effects of geometrical and material parameters on the vibrational performance and stability of the curves panel. Second, physical properties of the impactor are taken in to account and their effect on the absorbed energy and velocity profile of the impactor are presented. Finally, effect of the radius and initial velocity on the mode shapes of the current structure is demonstrated.

Assessment of time-dependent behaviour of rocks on concrete lining in a large cross-section tunnel

  • Mirzaeiabdolyousefi, Majid;Nikkhah, Majid;Zare, Shokrollah
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • Tunneling in rocks having the time-dependent behavior, causes some difficulties like tunnel convergence and, as a result, pressure on concrete lining; and so instability on this structure. In this paper the time-dependent behaviour of squeezing phenomenon in a large cross section tunnel was investigated as a case study: Alborz tunnel. Then, time-dependent behaviour of Alborz tunnel was evaluated using FLAC2D based on the finite difference numerical method. A Burger-creep viscoelastic model was used in numerical analysis. Using numerical analysis, the long-time effect of squeezing on lining stability was simulated.This study is done for primary lining (for 2 years) and permanent lining (for 100 years), under squeezing situations. The response of lining is discussed base on Thrust Force-Bending Moment and Thrust Force-Shear Force diagrams analysing. The results determined the importance of consideration of time-dependent behaviour of tunnel that structural forces in concrete lining will grow in consider with time pass and after 70 years can cause instability in creepy rock masses section of tunnel. To show the importance of time-dependent behavior consideration of rocks, elastic and Mohr-Coulomb models are evaluated at the end.

A Viscoplastic Constitutive Model Based on Overstress Concept with Time-Temperature Superposition Principle (시간-온도 중첩이론을 적용한 아스팔트 바인더의 점소성 구성 모형)

  • Yun, Tae-Young;Ohm, Byung-Sik;Yoo, Pyeong-Jun;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.75-83
    • /
    • 2012
  • PURPOSES: Suggestion of asphalt binder constitutive model based on time-temperature superposition principle and overstress concept in order to describe behavior of asphalt binders. METHODS: A series of temperature sweep tests and multiple stress creep and recovery(MSCR) tests are performed to verify the applicability of time-temperature superposition principle(t-Ts) and to develop viscoelastoplastic constitutive equation based on overstress concept. For the tests, temperature sweep tests at various high temperature and various frequency and MSCR test at $58^{\circ}C$, $64^{\circ}C$ $70^{\circ}C$, $76^{\circ}C$, and $82^{\circ}C$ are performed. From the temperature sweep tests, dynamic shear modulus mastercurve and time-temperature shift function are built and the shift function and MSCR at $58^{\circ}C$ are utilized to determine model coefficients of VBO model. RESULTS: It is observed that the time-temperature shift function built at low strain level of 0.1% is applicable not only to 1.0% strain level temperature sweep test but also maximum 500,00% strain level of MSCR test. As well, the modified VBO model shows perfect prediction on MSCR measured strain at the other temperatures. CONCLUSIONS: The Time-temperature superposition principle stands hold from very low strain level to very high strain level and that the modified VBO model can be applicable for various range of strain and temperature region to predict elastic, viscoelastic, and viscoplastic strain of asphalt binders.