• 제목/요약/키워드: viscoelastic material

검색결과 369건 처리시간 0.023초

유연보의 과도 진동 감쇠를 위한 점탄성 재료의 최적 분포 (Optimal Distribution of Viscoelastic Material for Transient Vibration Suppression of a Flexible Beam)

  • Kim, Tae-Woo;Kim, Ji-Hwan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.362.1-362
    • /
    • 2002
  • Eigenvalues are taken as performance criteria for structural damping design using viscoelastic material. Given material properties, optimal distribution of damping material is sought based on eigenvalue sensitivity. For eigenanalysis of frequency dependent viscoelastic material rented structures, Golla-Hughes-McTavish(GHM) model is used and some dominant modes are chosen for consideration. (omitted)

  • PDF

다자유도 곡선 맞춤법과 RKU 기법을 이용한 점탄성 감쇠재의 탄성 및 손실계수 추정방법 연구 (Study of the Measurement of Young's Modulus and Loss Factor for a Viscoelastic Damping Material Using a Multi Degree of Freedom Curve Fitting Method and RKU Equation)

  • 민천홍;박한일;배수룡;전재진
    • 한국해양공학회지
    • /
    • 제25권1호
    • /
    • pp.67-72
    • /
    • 2011
  • Offshore structures, such as a platform, a buoy, or a floating vessel, are exposed to several dynamic loads, and viscoelastic damping material is used to reduce the vibration of offshore structures. It is important to know the properties of viscoelastic materials because loss factor and Young's modulus of the viscoelastic damping material are dependent on frequency and temperature. In this study, an advanced technique for obtaining accurate loss factor and Young's modulus of the viscoelastic damping material is introduced based on a multi degree of freedom curve-fitting method and the RKU (Ross-Kerwin-Ungar) equations. The technique is based on a modified experimental procedure from ASTM E 756-04. Loss factor and Young's modulus of the viscoelastic damping material are measured for different temperatures by performing the test in a temperature-controlled vibration measurement room where temperature varies from 5 to 45 degrees Celsius.

초탄성 및 점탄성 물성을 고려한 자동차용 휠 베어링 실의 드래그 토크 예측 (Drag Torque Prediction for Automotive Wheel Bearing Seals Considering Viscoelastic as Well as Hyperelastic Material Properties)

  • 이승표
    • Tribology and Lubricants
    • /
    • 제35권5호
    • /
    • pp.267-273
    • /
    • 2019
  • Wheel bearings are important automotive parts that bear the vehicle weight and translate rotation motion; in addition, their seals are components that prevent grease leakage and foreign material from entering from the outside of the bearings. Recently, as the need for electric vehicles and eco-friendly vehicles has been emerging, the reduction in fuel consumption and $CO_2$ emissions are becoming the most important issues for automobile manufacturers. In the case of wheel bearings, seals are a key part of drag torque. In this study, we investigate the prediction of the drag torque taking into consideration the hyperelastic and viscoelastic material properties of automotive wheel bearing seals. Numerical analysis based on the finite element method is conducted for the deformation analyses of the seals. To improve the reliability of the rubber seal analysis, three types of rubber material properties are considered, and analysis is conducted using the hyperelastic material properties. Viscoelastic material property tests are also conducted. Deformation analysis considering the hyperelastic and viscoelastic material properties is performed, and the effects of the viscoelastic material properties are compared with the results obtained by the consideration of the hyperelastic material properties. As a result of these analyses, the drag torque is 0.29 Nm when the hyperelastic characteristics are taken into account, and the drag torque is 0.27 Nm when both the hyperelastic and viscoelastic characteristics are taken into account. Therefore, it is determined that the analysis considering both hyperelastic and viscoelastic characteristics must be performed because of its reliability in predicting the drag torque of the rubber seals.

Dynamic analysis of sandwich plate with viscoelastic core based on an improved method for identification of material parameters in GHM viscoelastic model

  • Mojtaba Safari;Hasan Biglari;Mohsen Motezaker
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.743-757
    • /
    • 2023
  • In this paper, the dynamic response of a simply-supported composite sandwich plate with a viscoelastic core based on the Golla-Hughes-McTavish (GHM) viscoelastic model is investigated analytically. The formulation is developed using the three-layered sandwich panel theory. Hamilton's principle has been employed to derive the equations of motion. Since classical models, like kelvin-voigt and Maxwell models, cannot express a comprehensive description of the dynamic behavior of viscoelastic material, the GHM method is used to model the viscoelastic core of the plate in this research. The main advantage of the GHM model in comparison with classical models is the consideration of the frequency-dependent characteristic of viscoelastic material. Identification of the material parameters of GHM mini-oscillator terms is an essential procedure in applying the GHM model. In this study, the focus of viscoelastic modeling is on the development of GHM parameters identification. For this purpose, a new method is proposed to find these constants which express frequency-dependent behavior characterization of viscoelastic material. Natural frequencies and loss factors of the sandwich panel based on ESL and three-layered theories in different geometrics are described at 30℃ and 90℃; also, the comparisons show that obtained natural frequencies are grossly overestimated by ESL theory. The argumentations of differences in natural frequencies are also illustrated in detail. The obtained results show that the GHM model presents a more accurate description of the plate's dynamic response by considering the frequency dependency behavior of the viscoelastic core.

점탄성재료가 결합된 PC슬래브의 바닥충격음 제어에 관한 수치해석 연구 (Numerical study on impact noise control of PC slab coupled with viscoelastic material)

  • 황재승;홍건호;박홍근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1160-1166
    • /
    • 2007
  • In this study, a new slab system that adjoint precast slabs are connected each other by viscoelastic material is proposed and numerical analysis is performed to evaluate the effect of the slab system on the vibration and noise control. Substructuring is introduced to develope the equation of motion of the slab system and the optimal properties of viscoelastic material are calculated. For the performance evaluation of the new slab system, the sound power and acceleration of the slab are compared with those of two way slab and the slab which the viscoelastic material is not connected. Numerical results show that the sound power of the new slab system can be reduced an amount of 6dB.

  • PDF

유연보의 과도 진동 감쇠를 위한 점탄성 재료의 최적 분포 (Optimal Distribution of Viscoelastic Material for Transient Vibration Suppression of a Flexible Beam)

  • 김태우;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.605-610
    • /
    • 2002
  • Eigenvalues are taken as performance criteria for structural damping design using viscoelastic material. Given material properties, optimal distribution of damping material is sought based on eigenvalue sensitivity. For eigenanalysis of frequency dependent viscoelastic material treated structures, Golla-Mushes-McTavish (GHM) model is used and some dominant modes are chosen for consideration. To avoid the intensity of computation caused by increased problem size, an alternative approximate method is proposed which uses elastic modes and can be applied under small damping assumption. A cantilever beam treated with unconstrained viscoelastic layer is tested and optimal distribution of thickness of the layer is illustrated. Partial coverage configurations are compared with the one-sided full coverage case.

  • PDF

공구고정부에 점탄성재료 삽입을 통한 채터감소에 관한 연구 (A Study on the Chatter Suppression by Inserting Viscoelastic Materials between Tool and Toolpost)

  • 유영기;심송;김광준
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.875-885
    • /
    • 1989
  • 본 연구에서는 이러한 경우를 대상으로 하여, 채터발생의 주원인이 공구가 되도록 돌출길이를 충분히 길게 한 상태에서 공구체결부에 점탄성재료를 삽입하고 채터진동 억제 효과를 검토하였다. 또한 점탄성 재료 삽입으로 인한 공구 고정부의 강성 및 감쇠의 변화를 공구고정부에 대한 유한요소해석(FEA) 및 충격실험 등을 수행 하여 알아보았으며, 정적 강성의 저하로 인해 안정절삭조건에서 발생할 수 있는 정밀 도저하를 검토하여 보았다.

Particle-based Numerical Modeling of Linear Viscoelastic Materials using MPM based on FEM for Taylor Impact Simulations

  • Kim, See Jo
    • Elastomers and Composites
    • /
    • 제53권4호
    • /
    • pp.207-212
    • /
    • 2018
  • Taylor rod impact tests have been the subject of many theoretical and experimental investigations. This paper discusses the numerical methods for simulating the Taylor impact test, which is widely used to obtain constitutive equations and failure conditions under high-velocity collisions of materials. With this in mind, a particle-based MPM (material point method) for linear viscoelastic solid materials was implemented, and MPM simulations for viscoelastic deformation behavior were numerically verified and confirmed by comparing the MPM and FEM results. In addition, this modeling and numerical approach could be extended to more complex viscoelastic models for basic understanding and to analyze the deformation and fracture behavior of more complicated viscoelastic material systems.

개에서 Irrigation/Aspiration장비와 점탄물질이 수정체 낭외적출술후의 합병증에 미치는 효과 (Effects of Irrigation/Aspiration Device and Viscoelastic Material on Complication after Extracapsular Lens Extraction in Dogs)

  • 우흥명;권오경;남치주
    • 한국임상수의학회지
    • /
    • 제14권1호
    • /
    • pp.56-64
    • /
    • 1997
  • These studies were performed to investigate the complications affecting the vision after extracapsular lens extraction(ECE), the effects of an I/A (irrigation & aspiration)device and a viscoelastic material used on the vision, the occurrence of complications and the effective corneal incision method to reduce the corneal opacity in dogs. ECE was performed bilaterally with 3 different methods using clinically normal twele mixed dogs; the method in which I/A device and viscoelastic material were not used, the method in which I/A device was used but viscoelastic material not, and the method in which I/A device and viscoelastic material were used. Postoperative complications were observed as followed; conjunctival injection, uveitis, corneal opacity due to endothelial cell loss, hyphemia, remnants of lens cortex, vitreous loss, synechia and capsular opacity. Preservation rate of vision was lower significantly in the cases showing signs of synechia, capsular opacity, or remnants of lens cortex than the cases not showing the above signs(p<0.01). There were significant reduction of the complications such as corneal opacity, clot in anterior chamber in the group using I/A device compared to the group in which I/A device was not used(p<0.01). Groups using I/A device showed slightly higher vision than the group not using I/A device (75%; 42%). There were no significant differences in the occurrence rate of complications and the preservative rate of vision between the groups with and without viscoelastic material. The present study indicated that the postoperative complications of posterior synechia, capsular opacity, uveitis and vistreous loss were important factors affecting the vision and that I/A device was applicable to extract the lens cortex and effective to elevate the success rate after ECE in dogs.

  • PDF

A micromechanics-based time-domain viscoelastic constitutive model for particulate composites: Theory and experimental validation

  • You, Hangil;Lim, Hyoung Jun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • 제9권3호
    • /
    • pp.217-242
    • /
    • 2022
  • This paper proposes a novel time-domain homogenization model combining the viscoelastic constitutive law with Eshelby's inclusion theory-based micromechanics model to predict the mechanical behavior of the particle reinforced composite material. The proposed model is intuitive and straightforward capable of predicting composites' viscoelastic behavior in the time domain. The isotropization technique for non-uniform stress-strain fields and incremental Mori-Tanaka schemes for high volume fraction are adopted in this study. Effects of the imperfectly bonded interphase layer on the viscoelastic behavior on the dynamic mechanical behavior are also investigated. The proposed model is verified by the direct numerical simulation and DMA (dynamic mechanical analysis) experimental results. The proposed model is useful for multiscale analysis of viscoelastic composite materials, and it can also be extended to predict the nonlinear viscoelastic response of composite materials.