• Title/Summary/Keyword: viscoelastic core

Search Result 42, Processing Time 0.031 seconds

Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core

  • Eyvazian, Arameh;Hamouda, Abdel Magid;Tarlochan, Faris;Mohsenizadeh, Saeid;Dastjerdi, Ali Ahmadi
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.891-906
    • /
    • 2019
  • This study considers the instability behavior of sandwich plates considering magnetorheological (MR) fluid core and piezoelectric reinforced facesheets. As facesheets at the top and bottom of structure have piezoelectric properties they are subjected to 3D electric field therefore they can be used as actuator and sensor, respectively and in order to control the vibration responses and loss factor of the structure a proportional-derivative (PD) controller is applied. Furthermore, Halpin-Tsai model is used to determine the material properties of facesheets which are reinforced by graphene platelets (GPLs). Moreover, because the core has magnetic property, it is exposed to magnetic field. In addition, Kelvin-Voigt theory is applied to calculate the structural damping of the piezoelectric layers. In order to consider environmental forces applied to structure, the visco-Pasternak model is assumed. In order to consider the mechanical behavior of structure, sinusoidal shear deformation theory (SSDT) is assumed and Hamilton's principle according to piezoelasticity theory is employed to calculate motion equations and these equations are solved based on differential cubature method (DCM) to obtain the vibration and modal loss factor of the structure subsequently. The effect of different factors such as GPLs distribution, dimensions of structure, electro-magnetic field, damping of structure, viscoelastic environment and boundary conditions of the structure on the vibration and loss factor of the system are considered. In order to indicate the accuracy of the obtained results, the results are validated with other published work. It is concluded from results that exposing magnetic field to the MR fluid core has positive effect on the behavior of the system.

Verification of drag-reduction capabilities of stiff compliant coatings in air flow at moderate speeds

  • Boiko, Andrey V.;Kulik, Victor M.;Chun, Ho-Hwan;Lee, In-Won
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.242-253
    • /
    • 2011
  • Skin frictional drag reduction efficiency of "stiff" compliant coating was investigated in a wind tunnel experiment. Flat plate compliant coating inserts were installed in a wind tunnel and the measurements of skin frictional drag and velocity field were carried out. The compliant coatings with varying viscoelastic properties had been prepared using different composition. In order to optimize the coating thickness, the most important design parameter, the dynamic viscoelastic properties had been determined experimentally. The aging of the materials (variation of their properties) during half a year was documented as well. A design procedure proposed by Kulik et al. (2008) was applied to get an optimal value for the coating thickness. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coatings. The compliant coatings with the thickness h = 7mm achieved 4~5% drag reduction within a velocity range 30~40 m/s. The drag reduction mechanism of the attenuation of turbulence velocity fluctuations due to the compliant coating was demonstrated. It is envisioned that larger drag reduction effect is obtainable at higher flow velocities for high speed trains and subsonic aircrafts.

Hybrid adaptive neuro-fuzzy inference system method for energy absorption of nano-composite reinforced beam with piezoelectric face-sheets

  • Lili Xiao
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.

Application of Spectral Element Method for the Vibration Analysis of Passive Constrained Layer Damping Beams (수동감쇠 적층보의 진동해석을 위한 스펙트럴요소법의 적용)

  • Song, Jee-Hun;Hong, Suk-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • This paper introduces a spectrally formulated element method (SEM) for the beams treated with passive constrained layer damping (PCLD). The viscoelastic core of the beams has a complex modulus that varies with frequency. The SEM is formulated in the frequency domain using dynamic shape functions based on the exact displacement solutions from progressive wave methods, which implicitly account for the frequency-dependent complex modulus of the viscoelastic core. The frequency response function and dynamic responses obtained by the SEM and the conventional finite element method (CFEM) are compared to evaluate the validity and accuracy of the present spectral PCLD beam element model. The spectral PCLD beam element model is found to provide very reliable results when compared with the conventional finite element model.

Study on the Nonlinear Characteristic Effects of Dielectric on Warpage of Flip Chip BGA Substrate

  • Cho, Seunghyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In this study, both a finite element analysis and an experimental analysis are executed to investigate the mechanical characteristics of dielectric material effects on warpage. Also, viscoelastic material properties are measured by DMA and are considered in warpage simulation. A finite element analysis is done by using both thermal elastic analysis and a thermo-viscoelastic analysis to predict the nonlinear effects. For experimental study, specimens warpage of non-symmetric structure with body size of $22.5{\times}22.5$ mm, $37.5{\times}37.5$ mm and $42.5{\times}42.5$ mm are measured under the reflow temperature condition. From the analysis results, experimental warpage is not similar to FEA results using thermal elastic analysis but similar to FEA results using thermo-viscoelastic analysis. Also, its effect on substrate warpage is increased as core thickness is decreased and body size is getting larger. These FEA and the experimental results show that the nonlinear characteristics of dielectric material play an important role on substrate warpage. Therefore, it is strongly recommended that non-linear behavior characteristics of a dielectric material should be considered to control warpage of FCBGA substrate under conditions of geometry, structure and manufacturing process and so on.

Dynamic Performance of Rubber-Filled Sandwich Composite (Rubber-Filled 샌드위치 복합재료의 진동 특성 평가)

  • Huang, Hao;Joe, Chee-Ryong;Kim, Dong-Uk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.238-243
    • /
    • 2004
  • A new sandwich composite was investigated in this paper. The honeycomb core of this composite was filled with viscoelastic material in order to obtain an improved damping performance. The viscoelastic fillings in the honeycomb cells was hoped to act as dampers and provide the function of energy dissipation in this combined material system. Dynamic test was set up to the specimens with various stacked carbon/epoxy laminate facesheets, $[0/90]_{4s}$, $[0/45/-45/90]_{2s}$, $[45/-45]_{4s}$. Frequency response, displacement response and damping ratio were checked and compared for the both groups of specimens, with and without rubber fillings. The experimental results provided a good agreement with our material design concept.

  • PDF

A Study on Material Damping of the $0^0&90^0$ Laminated Composite Sandwich Cantilever Beam inserted with Viscoelastic layer (점탄성층을 삽입한 $0^0&90^0$ 섬유강화 복합재료의 감쇠계수에 대한 연구)

  • Yim, Jong-Hee;Seo, Yun-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.345-348
    • /
    • 2004
  • In this paper it is to establish a comprehensive model for predicting damping in sandwich Laminated composites on the basis of strain energy method. In this model, the effect of transverse shear on the material damping has been considered with in-plane stresses. Results showed that the viscoelastic core thickness in the sandwich beam and the Length of a beam have a high impact on the material damping. The transverse shear appears to be highly influenced by the damping behavior in $0^0$ laminated sandwiched composites. However, it is Little influenced by that in $90^0$ laminated sandwiched composites.

  • PDF

Base-isolated building with high-damping spring system subjected to near fault earthquakes

  • Tornello, Miguel Eduardo;Sarrazin, Mauricio
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.315-340
    • /
    • 2012
  • There are many types of seismic isolation devices that are being used today for structural control of earthquake response in buildings. The most commonly used are sliding bearings and elastomeric bearings, the latter with or without lead core. An alternative solution is the use of steel springs combined with viscoelastic fluid dampers, which is the case discussed in this paper. An analytical study of a three-story building supported on helical steel springs and viscoelastic fluid dampers, GERB Control System (GCS), subjected to near-fault earthquakes is presented. Several earthquakes records have been obtained by the acceleration network installed in the isolated building and in its non-isolated twin since they were finished. These experimental results are analysed and discussed. The aim is to show that the spring-based system can be an alternative for base isolation of small building located near active faults.

Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method

  • Rostamia, Rasoul;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.821-829
    • /
    • 2021
  • Nonlinear dynamic response of a sandwich beam considering porous core and nano-composite face sheet on nonlinear viscoelastic foundation with temperature-variable material properties is investigated in this research. The Hamilton's principle and beam theory are used to drive the equations of motion. The nonlinear differential equations of sandwich beam respect to time are obtained to solve nonlinear differential equations by Homotopy perturbation method (HPM). The effects of various parameters such as linear and nonlinear damping coefficient, linear and nonlinear spring constant, shear constant of Pasternak type for elastic foundation, temperature variation, volume fraction of carbon nanotube, porosity distribution and porosity coefficient on nonlinear dynamic response of sandwich beam are presented. The results of this paper could be used to analysis of dynamic modeling for a flexible structure in many industries such as automobiles, Shipbuilding, aircrafts and spacecraft with solar easured at current time step and the velocity and displacement were estimated through linear integration.

Comparative Study on the Stability Analysis Methods for Underground Pumped Powerhouse Caverns in Korea (국내 양수발전소 지하공동 안정성 해석방법의 비교)

  • 임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.248-258
    • /
    • 2002
  • The sixth underground pumped powerhouse cavern is now under construction in Korea. For the stability analysis for the caverns of the five underground powerhouses, finite element method was used. For the analysis, in-situ rock stress were measured by overcoring method. The stress measurement showed that initial horizontal to vertical stress ratio was 1.07-1.32 in low powerhouse sites. Rock mass strength and elasticity were assumed from rock core properties through engineering processes. So the ratio of input elasticity fur the analysis were about 0.16-0.55 to rock core elasticity. In most of the analysis, elasto-plastic condition with Mohr-Coulomb failure criteria were applied. But in one case, viscoelastic condition was applied, too. The input cohesion and internal friction angle were approximately 0.12-0.22, 0.6-0.87 to rock core strength parameters, respectively.