• Title/Summary/Keyword: visco-plasticity

Search Result 27, Processing Time 0.02 seconds

A Study of Localization with Al7075 By Using Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 알루미늄 7075합금강의 국부화 현상에 대한 연구)

  • 이병섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.9-12
    • /
    • 2000
  • The importance of the role of plastic spin in the rate-dependent response of materials at large deformations is the main objective of this work. After a brief presentation of a general consitutive framework for visco-rigid plasticity at large strains an isotropic/kinematic hardening and a visco-rigid plastic model are used to analyze the stress-strain response under simple shear. A clear understanding of the role of plastic spin is achieved by obtaining numerical analyzed results for different stress values in which the plastic spin consititutive parameters interrelaste with the strain rate and other more conventional model constants, Especially this paper is concerned with introducing behaviors of Al7075

  • PDF

Finite Element Analysis with Viscoplastic Formulation in Open-Die RTP Process (개방형 RTP(Rapid Thermal Pressing)공정의 점소성 유한요소해석)

  • Son J. W.;Rhim S. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.284-289
    • /
    • 2004
  • Since polymer materials at elevated temperatures are usually rate-sensitive, the analysis of RTP process requires considering the effect of the rate-dependent. The material behavior that exhibits rate-sensitivity is called visco-plastic. A two-dimensional visco-plastic finite element formulation which constitutive equation is based on the formulation proposed by Perzyna is presented. This Paper is purposed to calcuate pressure distribution on PMMA in compression process and to predict the relationship with defects after demolding process. This paper analyzes, both analytically and numerically, the pressure distributions on the surface of PMMA during open-die RTP process. In this research, PMMA is used to be simulated at $110^{\circ}C$ near the transition temperature.

  • PDF

Finite Element Analysis of Superplastic Forming/Diffusion Bonding Processes (초소성 성형/확산접합 공정의 유한요소 해석)

  • 홍성석;김용환
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.37-46
    • /
    • 1996
  • Superplastic forming/diffusion bonding (SPF/DB) processes were analyzed using a rigid visco-plastic finite element method. The optimum pressure-time relationship for a target strain rate and thickness distributions were predicted by two-node line elements based on the membrane approximation for plane strain. Material behavior during SPF/DB of the integral structures having complicated shapes was investigated. The tying condition is employed for the analysis of inter-sheet contact problems. A movement of rib structure is successfully predicted during the forming.

  • PDF

Evaluation of mechnical preoperties of vibration damping steel sheets and their application to automobile engine oil pan (제진강판의 기계적 특성평가와 자동차오일팬으로의 적용)

  • 정재환;민병두;하용철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.99-118
    • /
    • 1994
  • In recent years reduction in noise and vibration in automobile has been strongly required not only from the standpoint of environmental regulations but also for raising the commercial value and ride comfort. Vibration damping steel sheets, which are composites made by sandwitching a visco-elastic resin layer between two steel sheets, have been developed as effective noise-abating materials and have found a growth of use in automobile industries. Vibration damping steel sheets for commercial use must be excellent in vibration damping property, press formability and spot weldability, but are inferior to ordinary steel sheets. In this study, the mechanical properties of vibration damping steel are evaluated, and press formability is analysed on the basis of those properties and shear bonding strength. The development of engine oil pan using damping steel sheets are also reported, focusing on serious problems in oil pan drawing.

Computational simulations of concrete behaviour under dynamic conditions using elasto-visco-plastic model with non-local softening

  • Marzec, Ireneusz;Tejchman, Jacek;Winnicki, Andrzej
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.515-545
    • /
    • 2015
  • The paper presents results of FE simulations of the strain-rate sensitive concrete behaviour under dynamic loading at the macroscopic level. To take the loading velocity effect into account, viscosity, stress modifications and inertial effects were included into a rate-independent elasto-plastic formulation. In addition, a decrease of the material stiffness was considered for a very high loading velocity to simulate fragmentation. In order to ensure the mesh-independence and to properly reproduce strain localization in the entire range of loading velocities, a constitutive formulation was enhanced by a characteristic length of micro-structure using a non-local theory. Numerical results were compared with corresponding laboratory tests and available analytical formulae.

Superplastic Forming /Diffusion Bonding Processes Design Using a Finite Element Method (유한요소법을 이용한 초소성 성형/확산접합 공정 설계)

  • 홍성석;이종수;김용환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.155-161
    • /
    • 1995
  • Superplastic forming/diffusion bonding(SPF/DB) processes are analyzed using a rigid visco-plastic finite element method. The optimum pressure-time relationship for a target strain rate and thickness distributions were predicted using two-node line element based on membrane approximation for plane strain shapes. Material behavior during SPF/DB of the integral structures with complicated shapes are investigated. The tying condition is employed for the analysis inter-sheet contact problems. A movement of rib structure is successfully prodicted during the forming.

  • PDF

Model for Flow Analysis of Fresh Concrete Using Particle Method with Visco-Plastic Flow Formulation (점소성 유동 입자법에 의한 굳지 않은 콘크리트의 유동해석 모델)

  • Cho, Chang-Geun;Kim, Wha-Jung;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.317-323
    • /
    • 2008
  • In the current study, A model for the flow analysis of fresh and highly flowable concrete has been developed using a particle method, the moving particle semi-implicit (MPS) method. The phenomena on the flow of concrete has been considered as a visco-plastic flow problem, and the basic governing equation of concrete particle dynamics has been based on the Navier-Stokes equation in Lagrangian form and the conservation of mass. In order to formulate a visco-plastic flow constitutive law of fresh concrete, concrete is modeled as a highly viscous material in the state of non-flow and as a visco-plastic material in the state of flow after reaching the yield stress of fresh concrete. A flow test of fresh concrete in the L-box was simulated and the predicted flow was well matched with the experimental result. The developed method was well showed the flow motion of concrete particles because it was formulated to be based on the motion of visco-plastic fluid dynamics.

Finite Element Analysis of Extrusion Process in Semi-Solid State (반용융 재료의 압출공정에 관한 유한요소해석)

  • 황재호;고대철;민규식;김병민;최재찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.5-15
    • /
    • 1997
  • It is the objective of this study that by conducting the serni-solid extrusion using A12024, the effect of various process variables on the quality of extruded product and extrusion force is understood. The results of experiment are compared with those of finite element simulation in order to verify the effectiveness of the developed FE-simulation code. In order to simulate densification in the deformation of serni-solid material, the semi-solid material is assumed to be composed of solid region as porous skeleton following compressible visco-plastic model and liquid region following Darcy's equation for the liquid flow saturated in the interstitial space. Then the flow and deformation of the semi-solid alloy are analyzed by coupling the deformation of the porous skeleton and the flow of the eutectic liquid. It is assumed that initial solid fraction is homogeneous. Yield and plastic potential function presented by Kuhn and constitutive model developed by Gunasekera are used for solid skeleton.

  • PDF

Study on the Aspheric Glass Lens Forming Simulation in the Progressive GMP process (순차이송 GMP 공정에서의 비구면 유리렌즈 성형 해석에 관한 연구)

  • Chang, S.H.;Gang, J.J.;Shin, K.H.;Jung, W.C.;Heo, Y.M.;Jung, T.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.539-542
    • /
    • 2008
  • Recently, GMP(Glass Molding Press) process is mainly used to produce aspheric glass lenses. Because glass lens is heated at high temperature above Ty (yielding point) for forming glass, the quality of aspheric glass lens is deteriorated by residual stresses which are generated in a aspheric glass lens after forming. Before this study, as a fundamental study to develop forming conditions for progressive GMP process, compression, strain relaxation and thermal conductivity tests were carried out to obtain the visco-rigid plastic, the visco-elastic and thermal properties of K-PBK40 which is newly developed and applied for precision molding glass material, In this study, using the experimental results we obtained, a glass lens forming simulation in progressive GMP process was carried out and we could forecast the shape of deformed glass lenses and residual stresses contribution in the structure of deformed glass lenses after forming.

  • PDF

Analysis of Deformation Localization of Void Material using Nolocal Constitutive Relation (I) (비국소형 구성식을 이용한 보이드 재료의 변형 국소화 거동의 해석(I))

  • 김영석;최홍석;임성언
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.59-65
    • /
    • 2000
  • Most studies of failure analysis in ductile metals have been based on the classical plasticity theory using the local constitutive relations. These frequently yields a physically unrealistic solution, in which a numerical prediction of the onset of a deformation localization shows an inherent mesh-size sensitivity. A one way to remedy the spurious mesh sensitivity resulted in the unreasonable results is to incorporate the non-local plasticity into the simulation model, which introduce an internal (material) length-scale parameter into the classical constitutive relations. In this paper, a non-local version of the modified Gurson constitutive relation has been introduced into the finite element formulation of the simulation for plane strain compression of the visco elastic-plastic void material. By introducing the non-local constitutive relations we could successfully removed the inherent mesh-size sensitivity for the prediction of the deformation localization. The effects of non-local constitutive relation are discussed in terms of the load-stroke curve and the strain distributions accross the shear band.

  • PDF