• Title/Summary/Keyword: virus-resistance

Search Result 440, Processing Time 0.025 seconds

Rapid Molecular Diagnosis using Real-time Nucleic Acid Sequence Based Amplification (NASBA) for Detection of Influenza A Virus Subtypes

  • Lim, Jae-Won;Lee, In-Soo;Cho, Yoon-Jung;Jin, Hyun-Woo;Choi, Yeon-Im;Lee, Hye-Young;Kim, Tae-Ue
    • Biomedical Science Letters
    • /
    • v.17 no.4
    • /
    • pp.297-304
    • /
    • 2011
  • Influenza A virus of the Orthomyxoviridae family is a contagious respiratory pathogen that continues to evolve and burden in the human public health. It is able to spread efficiently from human to human and have the potential to cause pandemics with significant morbidity and mortality. It has been estimated that every year about 500 million people are infected with this virus, causing about approximately 0.25 to 0.5 million people deaths worldwide. Influenza A viruses are classified into different subtypes by antigenicity based on their hemagglutinin (HA) and neuraminidase (NA) proteins. The sudden emergence of influenza A virus subtypes and access for epidemiological analysis of this subtypes demanded a rapid development of specific diagnostic tools. Also, rapid identification of the subtypes can help to determine the antiviral treatment, because the different subtypes have a different antiviral drug resistance patterns. In this study, our aim is to detect influenza A virus subtypes by using real-time nucleic acid sequence based amplification (NASBA) which has high sensitivity and specificity through molecular beacon. Real-time NASBA is a method that able to shorten the time compare to other molecular diagnostic tools and is performed by isothermal condition. We selected major pandemic influenza A virus subtypes, H3N2 and H5N1. Three influenza A virus gene fragments such as HA, NA and matrix protein (M) gene were targeted. M gene is distinguished influenza A virus from other influenza virus. We designed specific primers and molecular beacons for HA, NA and M gene, respectively. In brief, the results showed that the specificity of the real-time NASBA was higher than reverse transcription polymerase chain reaction (RT-PCR). In addition, time to positivity (TTP) of this method was shorter than real-time PCR. This study suggests that the rapid detection of neo-appearance pandemic influenza A virus using real-time NASBA has the potential to determine the subtypes.

Comparative Inactivation of Hepatitis A Virus and Murine Encephalomyocarditis Virus to Various Inactivation Processes (바이러스 불활화 공정에 대한 Hepatitis A Virus와 Murine Encephalomyocarditis Virus의 민감도 비교)

  • Kim, In-Seop
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.242-247
    • /
    • 2003
  • Murine encephalomyocarditis virus (EMCV) has been used as a surrogate for hepatitis A virus (HAV) for the validation of virus removal and/or inactivation during the manufacturing process of biopharmaceuticals. Recently international regulation for the validation of HAV safety has been reinforced because of the reported cases of HAV transmission to hemophiliac patients who had received ntihemophilic factors prepared from human plasma. The purpose of the present study was to compare the resistance of HAV and EMCV to various viral inactivation processes and then to standardize the HAV validation method. HAV was more resistant than EMCV to pasteurization (60oC heat treatment for 10 hr), low pH incubation (pH 3.9 at 25oC for 14 days), 0.1 M NaOH treatment, and lyophilization. EMCV was completely inactivated to undetectable levels within 2 hr of pasteurization, however, HAV was completely inactivated to undetectable levels after 5 hr treatment. EMCV was completely inactivated to undetectable levels within 15 min of 0.1 M NaOH treatment, however, residual infectivity of HAV still remained even after 120 min of treatment. The log reduction factors achieved during low pH incubation were 1.63 for HAV and 3.84 for EMCV. Also the log reduction factors achieved during a lyophilization process of antihemophilic factor VIII were 1.21 for HAV and 4.57 for EMCV. These results indicate that HAV rather than EMCV should be used for the virus validation study and the validation results obtained using EMCV should be precisely reviewed.

Characteristics of Cucumber mosaic virus-GTN and Resistance Evaluation of Chilli Pepper Cultivars to Two Cucumber mosaic virus Isolates (고추에서 분리한 오이모자이크바이러스(CMV-GTN)의 특성과 고추 품종의 저항성 평가)

  • Choi, Gug-Seoun;Kwon, Sun-Jung;Choi, Seung-Kook;Cho, In-Sook;Yoon, Ju-Yeon
    • Research in Plant Disease
    • /
    • v.21 no.2
    • /
    • pp.99-102
    • /
    • 2015
  • Cucumber mosaic virus (CMV) is one of the most destructive viruses in chilli pepper. An isolate of CMV was obtained from the chilli pepper cv. Chungyang showing top necrosis symptom in 2013 and designated as CMV-GTN. CMV-GTN was compared with the well-characterized isolate, CMV-Ca-P1, by investigating their amino acid sequences of the coat protein (CP) and biological reactions in several host plants. The CP of CMV-Ca-P1 composed of 217 amino acids but that of CMV-GTN composed of 218 amino acids by including additional valine in the $57^{th}$ amino acid position. Amino acid sequence similarity of the CP gene among CMV-GTN and other CMV isolates recorded in the GeneBank database ranged from 96% to 99%. CMV-GTN was selected as a representative isolate to screen the resistance pepper cultivars to CMV because it was highly pathogenic to tomatoes and peppers upon biological assays. The virulence of CMV-GTN was tested on 135 pepper cultivars which has been bred in Korea and compared with that of CMV-Ca-P1. Only the cv. Premium was resistant and three cvs. Hot star, Kaiser, and Good choice were moderately resistant to CMV-GTN, whereas two cvs. Baerotta and Kaiser were resistant to CMV-Ca-P1.

DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants

  • Hwi-Won Jeong;Tae Ho Ryu;Hyo-Jeong Lee;Kook-Hyung Kim;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.449-465
    • /
    • 2023
  • Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense-and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.

Identification of Glycine max Genes Expressed in Response to Soybean mosaic virus Infection

  • Jeong, Rae-Dong;Lim, Won-Seok;Kwon, Sang-Wook;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.47-54
    • /
    • 2005
  • Identification of host genes involved in disease progresses and/or defense responses is one of the most critical steps leading to the elucidation of disease resistance mechanisms in plants. Soybean mosaic virus (SMV) is one of the most prevalent pathogen of soybean (Glycine max). Although the soybeans are placed one of many important crops, relatively little is known about defense mechanism. In order to obtain host genes involved in SMV disease progress and host defense especially for virus resistance, two different cloning strategies (DD RT-PCR and Subtractive hybridization) were employed to identify pathogenesis- and defenserelated genes (PRs and DRs) from susceptible (Geumjeong 1) and resistant (Geumjeong 2) cultivars against SMV strain G7H. Using these approaches, we obtained 570 genes that expressed differentially during SMV infection processes. Based upon sequence analyses, differentially expressed host genes were classified into five groups, i.e. metabolism, genetic information processing, environmental information processing, cellular processes and unclassified group. A total of 11 differentially expressed genes including protein kinase, transcription factor, other potential signaling components and resistant-like gene involved in host defense response were selected to further characterize and determine expression profiles of each selected gene. Functional characterization of these genes will likely facilitate the elucidation of defense signal transduction and biological function in SMV-infected soybean plants.

Genotypes of Hepatitis C Virus in Relapsed and Non-respondent Patients and their Response to Anti-Viral Therapy in District Mardan, Khyber Pakhtunkhawa, Pakistan

  • Akhtar, Noreen;Bilal, Muhammad;Rizwan, Muhammad;Khan, Muhammad Asif;Khan, Aurangzeb
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1037-1040
    • /
    • 2015
  • Hepatitis C is a blood-borne infectious disease of liver, caused by a small enveloped, positive-single stranded RNA virus, called the hepatitis C virus (HCV). HCV belongs to the Flaviviridae family and has 6 genotypes and more than 100 subtypes. It is estimated that 185 million people are infected with HCV worldwide and 5% of these are in Pakistan. The study was designed to evaluate different genotypes of HCV circulating in District Mardan and to know about the behavior of these genotypes to different anti-viral regimes. In this study 3,800 patients were exposed to interferon alfa-2a plus Ribavirin treatment for 6-months and subjected to real-time PCR to check the viral response. Among these 3,677 (97%) patients showed no detectable HCV RNA while 123 (3%) patients (non-responders) remained positive for HCV RNA. Genotypes of their analyzed showed that most of them belonged to the 3a genotype. Non-responders (123) and relapsed (5) patients were subjected to PEG-interferon and Ribavirin therapy for next 6 months, which resulted into elimination of HCV RNA from 110 patients. The genotypes of the persisting resistant samples to anti-viral treatment were 3b, 2a, 1a and 1b. Furthermore, viral RNA from 6 patients remained un-typed while 4 patients showed mixed infections. HCV was found more resistant to antiviral therapy in females as compared to mals. The age group 36-45 in both females and males was found most affected by infection. In general 3a is the most prevalent genotype circulating in district Mardan and the best anti-viral therapy is PEG-interferon plus Ribavirin but it is common practice that due to the high cost patients receive interferon alfa-2a plus Ribavirin with consequent resistance in 3% patients given this treatment regime.

Diversity in Betasatellites Associated with Cotton Leaf Curl Disease During Source-To-Sink Movement Through a Resistant Host

  • Khan, Iftikhar Ali;Akhtar, Khalid Pervaiz;Akbar, Fazal;Hassan, Ishtiaq;Amin, Imran;Saeed, Muhammad;Mansoor, Shahid
    • The Plant Pathology Journal
    • /
    • v.32 no.1
    • /
    • pp.47-52
    • /
    • 2016
  • Cotton leaf curl is devastating disease of cotton characterized by leaf curling, vein darkening and enations. The disease symptoms are induced by DNA satellite known as Cotton leaf curl Multan betasatellite (CLCuMuB), dominant betasatellite in cotton but another betasatellite known as Chili leaf curl betasatellite (ChLCB) is also found associated with the disease. Grafting experiment was performed to determine if host plant resistance is determinant of dominant population of betasatellite in cotton (several distinct strains of CLCuMuB are associated with the disease). Infected scion of Gossypium hirsutum collected from field (the source) was grafted on G. arboreum, a diploid cotton species, resistant to the disease. A healthy scion of G. hirsutum (sink) was grafted at the top of G. arboreum to determine the movement of virus/betasatellite to upper susceptible scion of G. hirsutum. Symptoms of disease appeared in the upper scion and presence of virus/betasatellite in the upper scion was confirmed via molecular techniques, showing that virus/betasatellite was able to move to upper scion through resistant G. arboreum. However, no symptoms appeared on G. arboreum. Betasatelites were cloned and sequenced from lower scion, upper scion and G. arboreum which show that the lower scion contained both CLCuMuB and ChLCB, however only ChLCB was found in G. arboreum. The upper scion contained CLCuMuB with a deletion of 78 nucleotides (nt) in the non-coding region between Arich sequence and ${\beta}C1$ gene and insertion of 27 nt in the middle of ${\beta}C1$ ORF. This study may help in investigating molecular basis of resistance in G. arboreum.

Development of Potato Virus Y-Resistant Transgenic Potato (감자 바이러스 Y 저항성 형질전환 감자 개발)

  • PARK, Young Doo;RONIS D.H.;DUYSEN M.E.;CHENG Z.M.;LORENZEN J.H.
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.5
    • /
    • pp.313-317
    • /
    • 1997
  • Leaf segments of the potato (Solanum tuberosum L.) genotypes, ND860-2, Norchip, Russet Norkotah, Goldrush, and Norqueen Russet were transformed with the coat protein gene of potato virus Y (PVY). The white-skinned genotypes, ND860-2 and Norchip, were easily transformed and regenerated into shoots, whereas the three russet-skinned genotypes had low frequencies of regeneration. Transformed shoots were generally recovered in four to six weeks. Antibody to PVY coat protein detected a single band of 30 kD in western blots of transgenic plants. Transformed plants had a normal phenotype in the greenhouse and many showed a delayed buildup of PVY following inoculation. Several transgenic lines had negative ELISA readings 85 days after inoculation. Transgenic lines which did not show detectable levels of PVY antigen will be further tested for resistance to PVY.

  • PDF