• Title/Summary/Keyword: virus resistant

Search Result 327, Processing Time 0.03 seconds

Antimicrobial Activity of Bacteriophage Endolysin Produced in Nicotiana benthamiana Plants

  • Kovalskaya, Natalia;Foster-Frey, Juli;Donovan, David M.;Bauchan, Gary;Hammond, Rosemarie W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.160-170
    • /
    • 2016
  • The increasing spread of antibiotic-resistant pathogens has raised the interest in alternative antimicrobial treatments. In our study, the functionally active gram-negative bacterium bacteriophage CP933 endolysin was produced in Nicotiana benthamiana plants by a combination of transient expression and vacuole targeting strategies, and its antimicrobial activity was investigated. Expression of the cp933 gene in E. coli led to growth inhibition and lysis of the host cells or production of trace amounts of CP933. Cytoplasmic expression of the cp933 gene in plants using Potato virus X-based transient expression vectors (pP2C2S and pGR107) resulted in death of the apical portion of experimental plants. To protect plants against the toxic effects of the CP933 protein, the cp933 coding region was fused at its Nterminus to an N-terminal signal peptide from the potato proteinase inhibitor I to direct CP933 to the delta-type vacuoles. Plants producing the CP933 fusion protein did not exhibit the severe toxic effects seen with the unfused protein and the level of expression was 0.16 mg/g of plant tissue. Antimicrobial assays revealed that, in contrast to gram-negative bacterium E. coli (BL21(DE3)), the gram-positive plant pathogenic bacterium Clavibacter michiganensis was more susceptible to the plant-produced CP933, showing 18% growth inhibition. The results of our experiments demonstrate that the combination of transient expression and protein targeting to the delta vacuoles is a promising approach to produce functionally active proteins that exhibit toxicity when expressed in plant cells.

Pathotype of Tobamovirus Isolates from Commercial Red Pepper Seeds (시판 고추 종자에서 분리한 Tobamovirus의 병원형)

  • Han, Jung-Heon;Lee, Cheol-Ho;La, Yong-Joon
    • Horticultural Science & Technology
    • /
    • v.19 no.4
    • /
    • pp.530-534
    • /
    • 2001
  • A total of 23 isolates were obtained from seeds of 30 pepper cultivars by single lesion isolation on Nicotiana glutinosa. The isolates were tested for pathotype determination using standard pepper differentials. Two pathotypes of Tobamoviruses, namely P0 and P1.2 were detected from the pepper seeds, of which pathotype P1.2 was predominant. Pathotypes P1 and P1.2.3 were unable to detect in this study. All pepper cultivars except one showed resistance to two pathotypes, P0 and P1, but not to pathotype P1.2. These results could be useful for breeding Tobamovirus-resistant pepper and producing virus-free seed stock.

  • PDF

Root-zone Placement of Carbofuran for Control of Rice Insect Pests (Carbofuran 수도근계처리의 해충방제효과)

  • Ryu J. K.;Choi S. Y.;Lee H. R.;Song Y. H.
    • Korean journal of applied entomology
    • /
    • v.16 no.4 s.33
    • /
    • pp.217-220
    • /
    • 1977
  • During 1976 the effects of carbofuran placement in the root zone of the rice plants, the varieties Palkweng and Yushin, were evaluated for control of common rice pests in the paddy field at the Honam Crops Experiment Station. The methods of insecticide placement included the use of capsule formulation and liquid injection by the root-zone liquid insecticide injector designed at the International Rice Research Institute. The single ro~t-zone application of carbofuran at 2 days after transplanting was compared with two and fcur broadcast applications of carbofuran and diazinon. Capsules were the most. effective in controlling the striped rice borer (Chilo suppressalis), small brown plant-hopper (Laodelphax striatellus), green rice leafhopper (Nephotettix cincticeps) and stripe virus disease which is transmitted by the small brown planthopper. However, one injector application of carbofuran was equal or better the broadcast applications. Their control effectiveness were more significant on Palkweng susceptible to common rice pests than on Yushin resistant to the stripe virus disease.

  • PDF

Experimental Infection of Different Tomato Genotypes with Tomato mosaic virus Led to a Low Viral Population Heterogeneity in the Capsid Protein Encoding Region

  • Sihelska, Nina;Vozarova, Zuzana;Predajna, Lukas;Soltys, Katarina;Hudcovicova, Martina;Mihalik, Daniel;Kraic, Jan;Mrkvova, Michaela;Kudela, Otakar;Glasa, Miroslav
    • The Plant Pathology Journal
    • /
    • v.33 no.5
    • /
    • pp.508-513
    • /
    • 2017
  • The complete genome sequence of a Slovak SL-1 isolate of Tomato mosaic virus (ToMV) was determined from the next generation sequencing (NGS) data, further confirming a limited sequence divergence in this tobamovirus species. Tomato genotypes Monalbo, Mobaci and Moperou, respectively carrying the susceptible tm-2 allele or the Tm-1 and Tm-2 resistant alleles, were tested for their susceptibility to ToMV SL-1. Although the three tomato genotypes accumulated ToMV SL-1 to similar amounts as judged by semiquantitative DAS-ELISA, they showed variations in the rate of infection and symptomatology. Possible differences in the intra-isolate variability and polymorphism between viral populations propagating in these tomato genotypes were evaluated by analysis of the capsid protein (CP) encoding region. Irrespective of genotype infected, the intra-isolate haplotype structure showed the presence of the same highly dominant CP sequence and the low level of population diversity (0.08-0.19%). Our results suggest that ToMV CP encoding sequence is relatively stable in the viral population during its replication in vivo and provides further demonstration that RNA viruses may show high sequence stability, probably as a result of purifying selection.

Identification of Coupling and Repulsion Phase DNA Marker Associated With an Allele of a Gene Conferring Host Plant Resistance to Pigeonpea sterility mosaic virus (PPSMV) in Pigeonpea (Cajanus cajan L. Millsp.)

  • Daspute, Abhijit;Fakrudin, B.
    • The Plant Pathology Journal
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • Pigeonpea Sterility Mosaic Disease (PSMD) is an important foliar disease caused by Pigeonpea sterility mosaic virus (PPSMV) which is transmitted by eriophyid mites (Aceria cajani Channabasavanna). In present study, a F2 mapping population comprising 325 individuals was developed by crossing PSMD susceptible genotype (Gullyal white) and PSMD resistant genotype (BSMR 736). We identified a set of 32 out of 300 short decamer random DNA markers that showed polymorphism between Gullyal white and BSMR 736 parents. Among them, eleven DNA markers showed polymorphism including coupling and repulsion phase type of polymorphism across the parents. Bulked Segregant Analysis (BSA), revealed that the DNA marker, IABTPPN7, produced a single coupling phase marker (IABTPPN $7_{414}$) and a repulsion phase marker (IABTPPN $7_{983}$) co-segregating with PSMD reaction. Screening of 325 F2 population using IABTPPN7 revealed that the repulsion phase marker, IABTPPN $7_{983}$, was co-segregating with the PSMD responsive SV1 at a distance of 23.9 cM for Bidar PPSMV isolate. On the other hand, the coupling phase marker IABTPPN $7_{414}$ did not show any linkage with PSMD resistance. Additionally, single marker analysis both IABTPPN $7_{983}$ (P<0.0001) and IABTPPN $7_{414}$ (P<0.0001) recorded a significant association with the PSMD resistance and explained a phenotypic variance of 31 and 36% respectively in $F_2$ population. The repulsion phase marker, IABTPPN7983, could be of use in Marker-Assisted Selection (MAS) in the PPSMV resistance breeding programmes of pigeonpea.

Field Spread of Soy bean Mosaic Virus Strains (콩모자익바이러스 계통의 포장전염)

  • Cho Eui Kyoo;Goodman Robert M.
    • Korean journal of applied entomology
    • /
    • v.21 no.2 s.51
    • /
    • pp.53-60
    • /
    • 1982
  • Isolates of soybean mosaic virus (SMV) strains classified based on virulence in silt resistant soybean cultivars caused the same reactions in soybean cultivars used as differentials as those obtained by sap inoculations to the same cultivars. Five species of aphids (Myzus persicae SULZ., Aphis craccivora KOCH, Aphis citricola VAN., Rhopalosiphum maidis FIT., End R. padi L.) were able to transmit each of SMV strains. However, R. maidis and R. padi were inefficient vectors for transmission of SMV strain G3. Spread if four SMV strains (G2, G3, G6, and G7) was monitored in the field from sapinoculated plants in a one meter row of Williams soybeans (source plants) to plants in an adjacent row of Williams 80cm away (test plants). Test plants wert downwind from the source plants. A complete block design was used. Spread of strain G6 was significantly greater than that of other three strains. Two hundred six aphids were collected from June 27, 1979 to August 2, 1979 in the same field. A. citricola was the mist prevalent, comprising $68\%$ of the total aphids. Yields of Williams inoculated with each strain were also compared. Yields were the least from plants inoculated with strain G2 following G6, G3, and G7 in that order.

  • PDF

Whole Genome Sequencing of Two Musa Species Towards Disease Resistance and Fiber Quality Improvement

  • John Ivan Pasquil;Richellen Plaza;Roneil Christian Alonday;Damsel Bangcal;Julianne Villela;Antonio, Lalusin;Maria Genaleen Diaz;Antonio Laurena
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.32-32
    • /
    • 2022
  • Abaca (Musa textilis L. Nee) is a native Musa species from the Philippines known for its natural fiber. Abaca fiber a.k.a. Manila hemp extracted from its pseudostems is considered one of the strongest fibers in the world. This is used for commodities such as ropes, papers, and money bills. Abaca is vulnerable to pests and diseases such as the Abaca Bunchy Top Disease (ABTD) caused by Abaca Bunchy Top Virus (ABTV) and Banana Bunchy Top Virus (BBTV). Inosa, one of the varieties of abaca utilized in the Philippines, is highly susceptible to ABTD. In contrast, Pacol (Musa balbisiana L.), a close relative of abaca, is highly resistant to the same disease. Here, we report the sequencing and de novo genome assembly of both abaca var. Inosa and banana var. Pacol. A total of ~16 Gb and ~21 Gb raw reads for Inosa and Pacol, respectively, were generated using Pacbio Hifi sequencing method and assembled with Hifiasm. High-quality de novo assemblies of both Musa species with 99% recovered as per BUSCO analysis were obtained. The assembled Inosa genome has a total length of ~654 Mb and N50 of 7 Mb while Pacol has a total length of 527 Mb and N50 of 3 Mb which are close to their estimated genome size of ~638 Mb and ~503 Mb, respectively. The information that can be derived from the de novo assembled genomes would provide a solid foundation for further research in disease resistance and fiber quality improvement in abaca.

  • PDF

Severe Outbreak of Rice Stripe Virus and Its Occurring Factors (벼줄무늬잎마름바이러스의 대 발생과 발생 요인)

  • Kim, Jeong-Soo;Lee, Gwan-Seok;Kim, Chang-Seok;Choi, Hong-Soo;Lee, Soo-Heon;Kim, Mi-Kyeong;Kwag, Hae-Ryun;Nam, Mun;Kim, Jeong-Sun;Noh, Tae-Hwan;Kang, Mi-Hyung;Cho, Jeom-Deog;Kim, Jin-Young;Kang, Hyo-Jung;Han, Jong-Woo;Kim, Byung-Ryun;Jeong, Sung-Soo;Kim, Ju-Hee;Kuo, Sug-Ju;Lee, Jung-Hwan;Kim, Tae-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.545-572
    • /
    • 2011
  • The genetic diagnosis methods by RT-PCR and Virion capture (VC)/RT-PCR against Rice stripe virus (RSV) were developed. Three diagnosis methods of seedling test, ELISA and RT-PCR were compared in virus detection sensitivity (VDS) for RSV. The VDS of ELISA for RSV viruliferous small brown plant hopper (SBPH) was higher with 40.5% than that of seedling test. The VDS of RT-PCR was higher with 21% than that of ELISA. The VDS of ELISA and VC/RT-PCR was same with 9.2% in average on the SBPH collected from fields at the areas of Gimpo, Pyungtaeg and Sihueng, Gyeonggi province in 2009. The specific primers of RSV for SBPH and rice plant were developed for the diagnosis by Real time PCR. The RQ value of Real time PCR for the viruliferous and non viruliferous SBPH was 1 for 50 heads of non viruliferous SBPH, 96.5 for 50 heads of viruliferous SBPH, 23.1 for 10 heads of viruliferous SBPH + 40 heads of non viruliferous SBPH, and 75.6 for 30 heads of viruliferous SBPH + 20 heads of non viruliferous SBPH. The RQ value was increased positively by the ratio of viruliferous SBPH. Full sequences of 4 genomes of RSV RNA1, RNA2, RNA3 and RNA4 were analysed for the 13 RSV isolates from rice plants collected from different areas. Genetic relationships among the RSV isolates of Korea, Japan and China were classified as China + Korea, and China + Korea + Japan by phylogenetic analysis for RSV RNA1 and RNA2. In case of RNA3 involved in pathogenicity, genetic relationship of RSV among the three countries was grouped into 3 as China, China + Korea, and Korea + Japan. According to the genetic relationships in RSV RNA4, RSV isolates were grouped into 4 as China, Korea, China + Korea + Japan, and Korea + Japan. Viruliferous insect rate (VIR) of RSV in average increased in each year from 2008 to 2010, and the rates were 4.3%, 6.1%, and 7.2%, respectively, at the 28 major rice production areas in 7 provinces including Gyeonggido. The highest VIR in each year was 11.3% of Gyeonggido in 2008, 20.1% of Jellanamdo in 2009 and 14.2% of Chungcheongbukdo in 2010. The highest VIR depending upon the investigated areas was 22.1% at Buan of Jellabukdo in 2008, 36% at Wando and Jindo of Jellanamdo in 2009, and 30.0% at Boeun of Chungcheongbukdo in 2010. Average population density (APD) of overwintered SBPH was 13.1 heads in 2008, 13.9 heads in 2009 and 5.6 heads in 2010. The highest APD was 39.1 and 60.4 heads at Buan of Jellabukdo in 2008 and 2009, respectively, and 14.0 heads at Pyungtaeg of Gyeonggido. The acreage of RSV occurred fields was 869 ha in the western and southern parts, mainly at Jindo and Wando areas, of Jellanamdo in 2008. In 2009, RSV occurred in the acreage of 21,541 ha covered whole country, especially, partial and whole plant death were occurred with infection rate of 55.2% at 3,025 plots in 53 Li, 39 Eup/Myun, 19 Si/Gun of Gyeonggido, Incheonsi, Chungcheongnamdo, Jeollabukdo and Jeollanamdo. Seasonal development of overwintered SBPH was investigated at Buan, Jeollabukdo, and Jindo, Jeollanamdo for 3 years from 2008. Most SBPH developed to the 3rd and 4th instar on the periods of May 20 to June 10, and they developed to the adult stage for the 1st generation on Mid and Late June. In 2009, all SBPH trapped by sky net trap were adult on May 31 to June 1 at Mid-western aeas of Taean, Seosan and Buan, and South-western areas of Sinan and Jindo. The population density of adult SBPH was 963 heads at Taean, 919 at Seocheon and 819 at Sinan area. The origin of these higher population of adult SBPH were verified from the population of non-overwintered SBPH but immigrant SBPH. From Mid May to Mid June in 2010, adult SBPH could not be counted as immigrant insects by sky net trap. The variation of RSV VIR was high with 2.1% to 9.5% for immigrant adult SBPH trapped by sky net trap at Hongsung of Chungcheongbukdo, Buan of Jeollabukdo and so forth in 2009. The highest VIR for the immigrant adult SBPH was 9.5% at Boryung of Chungcheongnamdo, followed by 7.9% at Hongsung of Chungcheongnamdo, 6.5% at Younggwang of Jeollanamdo, and 6.4% at Taean of Cheongcheongnamdo. The infection rate of RSV on rice plants induced by the immigrant adult SBPH cultivated near sky net trap after about 10 days from immigration on June 12 in 2009 was 84.6% at Taean, 65.4% at Buan and 92.9% at Jindo, and 81% in average through genetic diagnosis of RT-PCR. Barley known as a overwintering host plant of RSV had very low infection rate of 0.2% from 530 specimens collected at 10 areas covering whole country including Pyungtaeg of Gyeonggido. Twenty nine plant species were newly recorded as natural hosts of RSV. In winter annual plant species, 11 plants including Vulpia myuros showed RSV infection rate of 24.9%. The plant species in summer annual ecotype were 13 including Digitaria ciliaris with 44.9%, Echinochloa crusgalli var. echinata with 95.2% and Setaria faberi with 65.5% in infection rate of RSV. Five perennial plants including Miscanths sacchariflorus with infection rate of 33.3% were recorded as hosts of RSV. Rice cultivars, 8 susceptible cultivars including Donggin1 and 17 resistant ones including Samgwang, were screened in field conditions at 3 different areas of Buan, Iksan and Ginje in 2009. All the susceptible cultivars were showed typical symptom of mosaic and wilt. In 17 genetic resistant cultivar, 12 cultivars were susceptible, however, 5 cultivars were field-resistant plus genetic resistant to RSV as non symptom expression. When RSV was artificially inoculated at seedling stage to 4 cultivars known as genetic resistant and 3 cultivars known as genetic susceptible, the symptom expression in resistant cultivars was lower as 19.3% in average than that of 53.3% in susceptible ones. In comparison of symptom expression rate and viral infection rate using resistant Nampyung and susceptible Heugnam cultivars by artificial inoculation of RSV at seedling stage, the symptom expression of Heugnam was higher as 28% than 12% of Nampyung. However, virion infection of resistant Nampyung cultivar was higher as 12% reversely than 85% of susceptible Heugnam. Yield loss of rice was investigated by the artificial inoculation of RSV at the seedling stage of resistant cultivars of Nampyung and Onnuri, and susceptible cultivars of Donggin1 and Ungwang for 3 years from 2008. The average yield per plant was 7.8 g, 8.5 g and 13.8 g on rice plants inoculated at seedling stage, tillering stage and maximum tillering stage, respectively. The yield loss rate was increased by earlier infection of RSV with 51% at seedling stage, 46% at tillering stage and 13% at maximum tillering stage. In resistant rice cultivars, there was no statistically significant relation between infection time and yield loss. In natural fields on susceptible rice cultivar of Ungwang at Taean and Jindo areas in 2009, the yield loss rate was increased with same tendency to the infection hill rate having the corelation coefficient of 0.94 when the viral infection was over 23.4%.

Bovine Genome-wide Association Study for Genetic Elements to Resist the Infection of Foot-and-mouth Disease in the Field

  • Lee, Bo-Young;Lee, Kwang-Nyeong;Lee, Taeheon;Park, Jong-Hyeon;Kim, Su-Mi;Lee, Hyang-Sim;Chung, Dong-Su;Shim, Hang-Sub;Lee, Hak-Kyo;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.166-170
    • /
    • 2015
  • Foot-and-mouth disease (FMD) is a highly contagious disease affecting cloven-hoofed animals and causes severe economic loss and devastating effect on international trade of animal or animal products. Since FMD outbreaks have recently occurred in some Asian countries, it is important to understand the relationship between diverse immunogenomic structures of host animals and the immunity to foot-and-mouth disease virus (FMDV). We performed genome wide association study based on high-density bovine single nucleotide polymorphism (SNP) chip for identifying FMD resistant loci in Holstein cattle. Among 624532 SNP after quality control, we found that 11 SNPs on 3 chromosomes (chr17, 22, and 15) were significantly associated with the trait at the p.adjust <0.05 after PERMORY test. Most significantly associated SNPs were located on chromosome 17, around the genes Myosin XVIIIB and Seizure related 6 homolog (mouse)-like, which were associated with lung cancer. Based on the known function of the genes nearby the significant SNPs, the FMD resistant animals might have ability to improve their innate immune response to FMDV infection.

Probiotic Property of Lactobacillus pentosus Miny-148 Isolated from Human Feces (인체분변으로부터 분리한 유산균 Lactobacillus pentosus Miny-148의 생균제 특성 연구)

  • Jung, Min-Young;Park, Yong-Ha;Kim, Hyun-Soo;Poo, Ha-Ryoung;Chang, Young-Hyo
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.177-184
    • /
    • 2009
  • Three hundred lactic acid bacteria isolated from human feces were studied their probiotic characters to develop potential probiotics. The properties were tested on the basis of guideline for probiotic selection protocol such as tolerance for acid or bile salt, thermal stability, antimicrobial, anticancer cell, and antiviral activity. Strain Miny-148 was selected as a potential probiotic bacterium which showed resistance to low pH, bile salts and thermal stability. On the basis of fatty acid profiles and 16S rDNA sequences analysis, the strain was identified as Lactobacillus pentosus (similarity 99.9%). The strain, L. pentosus Miny-148, showed broad antimicrobial spectrum against E. coli O157:H7, Shigella flexneri, Bacillus anthracis, Staphylococcus aureus, E. coli, Vibrio cholerae, V. vulnificus, Salmonella typhimurium, and Methicillin-resistant S. aureus (MRSA). Cell-free culture supernatant of the strain also inhibited against the growth of HT-29 colon cancer cell and transmissible gastroenterits virus.