Browse > Article
http://dx.doi.org/10.4014/jmb.1505.05060

Antimicrobial Activity of Bacteriophage Endolysin Produced in Nicotiana benthamiana Plants  

Kovalskaya, Natalia (Molecular Plant Pathology Laboratory, U.S. Department of Agriculture, Agricultural Research Service)
Foster-Frey, Juli (Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service)
Donovan, David M. (Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service)
Bauchan, Gary (Electron and Confocal Microscopy Unit, U.S. Department of Agriculture, Agricultural Research Service)
Hammond, Rosemarie W. (Molecular Plant Pathology Laboratory, U.S. Department of Agriculture, Agricultural Research Service)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.1, 2016 , pp. 160-170 More about this Journal
Abstract
The increasing spread of antibiotic-resistant pathogens has raised the interest in alternative antimicrobial treatments. In our study, the functionally active gram-negative bacterium bacteriophage CP933 endolysin was produced in Nicotiana benthamiana plants by a combination of transient expression and vacuole targeting strategies, and its antimicrobial activity was investigated. Expression of the cp933 gene in E. coli led to growth inhibition and lysis of the host cells or production of trace amounts of CP933. Cytoplasmic expression of the cp933 gene in plants using Potato virus X-based transient expression vectors (pP2C2S and pGR107) resulted in death of the apical portion of experimental plants. To protect plants against the toxic effects of the CP933 protein, the cp933 coding region was fused at its Nterminus to an N-terminal signal peptide from the potato proteinase inhibitor I to direct CP933 to the delta-type vacuoles. Plants producing the CP933 fusion protein did not exhibit the severe toxic effects seen with the unfused protein and the level of expression was 0.16 mg/g of plant tissue. Antimicrobial assays revealed that, in contrast to gram-negative bacterium E. coli (BL21(DE3)), the gram-positive plant pathogenic bacterium Clavibacter michiganensis was more susceptible to the plant-produced CP933, showing 18% growth inhibition. The results of our experiments demonstrate that the combination of transient expression and protein targeting to the delta vacuoles is a promising approach to produce functionally active proteins that exhibit toxicity when expressed in plant cells.
Keywords
Endolysin; vacuolar targeting; potato proteinase inhibitor I; transient expression; Potato virus X; Nicotiana benthamiana;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Borisjuk NV, Borisjuk LG, Logendra S, Petersen F, Gleba Y, Raskin I. 1999. Production of recombinant proteins in plant root exudates. Nat. Biotechnol. 17: 466-469.   DOI
2 Borysowski J, Weber-Dabrowska B, Gorski A. 2006. Bacteriophage endolysins as a novel class of antibacterial agent. Exp. Biol. Med. 231: 366-377.   DOI
3 Chapman S, Kavanagh T, Baulcombe D. 1992. Potato virus X as a vector for gene expression in plants. Plant J. 2: 549-557.
4 Donovan DM. 2007. Bacteriophage and peptidoglycan degrading enzymes with antimicrobial applications. Recent Pat. Biotechnol. 1: 1-10.   DOI
5 Company N, Nadal A, La Paz J-L, Martinez S, Rasche S, Schillberg S, et al. 2014. The production of recombinant cationic α-helical antimicrobial peptides in plant cells induces the formation of protein bodies derived from the endoplasmic reticulum. Plant Biotechnol. J. 12: 81-92.   DOI
6 Daniell H, Lee SB, Panchal T, Wiebe PO. 2001. Expression of the native cholera B toxin subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol. Biol. 311: 1001-1009.   DOI
7 Donini M, Lico C, Baschieri S, Conti S, Magliani W, Polonelli L, Benvenuto E. 2005. Production of an engineered killer peptide in Nicotiana benthamiana by using a Potato virus X expression system. Appl. Environ. Microbiol. 71: 6360-6367.   DOI
8 Donovan DM, Becker SC, Dong S, Baker JR, Foster-Frey JA, Pritchard DG. 2009. Peptidoglycan hydrolase enzyme fusions are uniquely suited for treating multi-drug resistant pathogens. Biotech. Int. 21: 6-10.
9 Drake PM, Chargelegue DM, Vine ND, van Dolleweerd CJ, Obregon P, Ma JK. 2003. Rhizosecretion of a monoclonal antibody protein complex from transgenic tobacco roots. Plant Mol. Biol. 52: 233-241.   DOI
10 During K, Porsch P, Mahn A, Brinkmann O, Gieffers W. 1999. The non-enzymatic microbicidal activity of lysozymes. FEBS Lett. 449: 93-100.   DOI
11 Filice GA, Nyman JA, Lexau C. 2010. Excess costs and utilization associated with Staphylococcus aureus infection. Infect. Control Hosp. Epidemiol. 31: 365-367.   DOI
12 Fischetti VA. 2008. Bacteriophage lysins as effective antibacterials. Curr. Opin. Microbiol. 11: 393-400.   DOI
13 Jauh G-Y, Fischer AM, Grimes HD, Ryan CA, Rogers JC. 1998. δ-Tonoplast intrinsic protein defines unique plant vacuole functions. Proc. Natl. Acad. Sci. USA 95: 12995-12999.   DOI
14 Fischetti VA. 2010. Bacteriophage endolysins: a novel antiinfective to control gram-positive pathogens. Int. J. Med. Microbiol. 300: 357-362.   DOI
15 Haddix AC, Teutsch SM, Corso PS. 2003. Prevention Effectiveness: A Guide to Decision Analysis and Economic Evaluation, pp. 345-357. 2nd Ed. Oxford University Press, New York.
16 Jackson MA, Nutt KA, Hassall R, Rae AL. 2010. Comparative efficiency of subcellular targeting signals for expression of a toxic protein in sugarcane. Funct. Plant Biol. 37: 785-793.   DOI
17 Jauh G-Y, Phillips TE, Rogers JC. 1999. Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11: 1867-1882.   DOI
18 Jørgensen CS, Ryder LR, Steinø A, Højrup P, Hansen J, Beyer NH, et al. 2003. Dimerization and oligomerization of the chaperone calreticulin. Eur. J. Biochem. 270: 4140-4148.   DOI
19 Komarnytsky S, Borisjuk NV, Borisjuk LG, Alam MZ, Raskin I. 2000. Production of recombinant proteins in tobacco guttation fluid. Plant Physiol. 124: 927-933.   DOI
20 Kovalskaya N, Hammond RW. 2009. Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expr. Purif. 63: 12-17.   DOI
21 Kovalskaya N, Zhao Y, Hammond RW. 2011. Antibacterial and antifungal activity of a snakin-defensin hybrid protein expressed in tobacco and potato plants. Open Plant Sci. J. 5: 29-42.   DOI
22 Loeffler JM, Nelson D, Fischetti VA. 2001. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294: 2170-2172.   DOI
23 Lacomme C, Chapman S. 2008. Use of Potato virus X (PVX)- based vectors for gene expression and virus-induced gene silencing (VIGS). Curr. Protoc. Microbiol. 8: 16I.1.1-16I.1.13.
24 Lico C, Chen Q, Santi L. 2008. Viral vectors for production of recombinant proteins in plants. J. Cell. Physiol. 216: 366-377.   DOI
25 Loeffler JM, Fischetti VA. 2003. Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains. Antimicrob. Agents Chemother. 47: 375-377.   DOI
26 Murray C, Sutherland PW, Phung MM, Lester MT, Marshall RK, Christeller JT. 2002. Expression of biotin-binding proteins, avidin and streptavidin, in plant tissues using plant vacuolar targeting sequences. Transgenic Res. 11: 199-214.   DOI
27 Oliveira H, Melo LDR, Santos SB, Nobrega FL, Ferreira EC, Cerca N, et al. 2013. Molecular aspects and comparative genomics of bacteriophage endolysins. J. Virol. 87: 4558-4570.   DOI
28 Orito Y, Morita M, Hori K, Unno H, Tanji Y. 2004. Bacillus amyloliquefaciens phage endolysin can enhance permeability of Pseudomonas aeruginosa outer membrane and induce cell lysis. Appl. Microbiol. Biotechnol. 65: 105-109.   DOI
29 Pang T, Savva CG, Fleming KG, Struck DK, Young R. 2009. Structure of the lethal phage pinhole. Proc. Natl. Acad. Sci. USA 106: 18966-18971.   DOI
30 Pang T, Fleming TC, Pogliano K, Young R. 2013. Visualization of pinholin lesions in vivo. Proc. Natl. Acad. Sci. USA 110: E2054-E2063.   DOI
31 Saitoh H, Kiba A, Nishihara M, Yamamura S, Suzuki K, Terauchi R. 2001. Production of antimicrobial defensin in Nicotiana benthamiana with a Potato virus X vector. Mol. Plant Microbe Interact. 14: 111-115.   DOI
32 Park T, Struck DK, Dankenbring CA, Young R. 2007. The pinholin of lambdoid phage 21: control of lysis by membrane depolarization. J. Bacteriol. 189: 9135-9139.   DOI
33 Perna NT, Plunkett GIII, Burland V, Mau B, Glasner JD, Rose DJ, et al. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529-533.   DOI
34 Rashel M, Uchiyama J, Ujihara T, Uehara Y, Kuramoto S, Sugihara S, et al. 2007. Efficient elimination of multidrugresistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11. J. Infect. Dis. 196: 1237-1247.   DOI
35 São-José C, Parreira R, Vieira G, Santos MA. 2000. The Nterminal region of the Oenococcus oeni bacteriophage fOg44 lysin behaves as a bona fide signal peptide in Escherichia coli and as a cis-inhibitory element, preventing lytic activity on oenococcal cells. J. Bacteriol. 182: 5823-5831.   DOI
36 Schmelcher M, Donovan DM, Loessner MJ. 2012. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 7: 1147-1171.   DOI
37 Shen Y, Mitchell MS, Donovan DM, Nelson DC. 2012. Phage-based enzybiotics, pp. 217-239. In Hyman P, Abedon ST (eds.). Bacteriophages in Health and Disease. CAB International, Wallingford, UK.
38 Wang I-N, Deaton J, Young R. 2003. Sizing the holin lesion with an endolysin-beta-galactosidase fusion. J. Bacteriol. 185: 779-787.   DOI
39 Tan M, Hegde RS, Jiang X. 2004. The P domain of novovirus capsid protein forms dimer and binds to histoblood group antigen receptors. J. Virol. 78: 6233-6242.   DOI
40 Tregoning JS, Nixon P, Kuroda H, Svab Z, Clare S, Bowe F, et al. 2003. Expression of tetanus toxin fragment C in tobacco chloroplasts. Nucleic Acids Res. 31: 1174-1179.   DOI
41 Wang I-N, Smith DL, Young R. 2000. Holins: the protein clocks of bacteriophage infections. Annu. Rev. Microbiol. 54: 799-825.   DOI
42 Xu M, Struck DK, Deaton J, Wang I-N, Young RY. 2004. A signal-arrest release sequence mediates export and control of the phage P1 endolysin. Proc. Natl. Acad. Sci. USA 101: 6415-6420.   DOI