• Title/Summary/Keyword: virus replication

Search Result 360, Processing Time 0.031 seconds

Comparison of Analysis Methods for Detection of Replication Competent Virus and Functional Titers of HIV-l Based Lentivirus Vector (HIV-l 유래 렌티바이러스 벡터의 복제가능 바이러스 검출과 역가측정 분석방법 비교)

  • Chang Seok Kee;Oh Il Ung;Jeong Jayoung;Ahn Kwang Soo;Sohn Yeowon
    • YAKHAK HOEJI
    • /
    • v.49 no.3
    • /
    • pp.217-224
    • /
    • 2005
  • Human Immunodeficiency Virus type 1 (HIV-l) based lentivirus vector has demonstrated great potential as gene therapy vectors mediating efficient gene delivery and long-term transgene expression in both dividing and nondividing cells. However, for clinical studies it must be confirmed that vector preparations are safe and not contaminated by replication competent lentivirus (RCL) related to the parental pathogenic virus, HIV-l. In this study, we would like to establish the method for titration and RCL detection of lentivirus vector. The titration was determined by vector expression containing the green fluorescent protein, GFP in transduced cells. The titer was $1{\times}10^7$ Transducing Unit/ml in the GFP expression assay and $8.9{\times}10^7$ molecules/ml in the real-time PCR. Also, for the detection of RCL, we have used a combination method of PCR and p24 antigen detection. First, PBS/psi and VSV-G region in the genomic DNA of transduced cells was detected by PCR assay. Second, transfer and expression of the HIV-1 gag gene was detected by p24 ELISA. In an attempt to amplify any RCL, the transduced cells were cultured for 3 weeks (amplification phase) and the supernatant of amplified transduced cell was used for the second transduction to determine whether a true RCL was present (indicator phase). Analysis of cells and supernatant at day 6 in indicator phase were negative for PBS/psi, VSV-G, and p24 antigen. These results suggest that they are not mobilized and therefore there are no RCL in amplification phase. Thus, real-time PCR is a reliable and sensitive method for titration and RCL detection of lentivirus vector.

Cloning of the non-virion (NV) of a Korean Isolate of Infectious Hematopoietic Necrosis and Identification of the Role of the NV in IHNV Replication (한국에서 분리된 전염성 조혈괴저 바이러스의 non-virion (NV) 단백질의 유전자 클로닝 및 바이러스 증식에서의 역할)

  • 문창훈;조화자;윤원준;박정재;박정민;김현주;도정완;이주양;임채렬
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.103-108
    • /
    • 2000
  • We have cloned and analyzed cDNA coding for non-virion (NV) protein of the m V - P R T The NV gene contained 336 bp open readmg frame and encoded a protein of 11 1 amino acids with a molecular weight of 13.2 kDa. The deduced amino acid sequence of NV of IHNVPRT was found to be 90-95% identical to those of foreign isolates of IHNV. These results indicate that NV gene of the MNV is highly conserved among &ifferent strains of THNV Northern blot analyses revealed that the levels of NV gene expression were strongly elevated after 20 h post-infection. In order to identify the role of NV in the replication of MNV in fish cells, IHNVinfected cells were treated with antisense oligonucleotides. While IHNV-PRT exposed to glycoprotein (G) antisense oligonucleotide showed severely reduced growth, the growth of virus exposed to NV antisense oligonucleotide was not affected by NV antisense oligonucleotide, which suggests that NV is not essential for replication of IHNV in fish cells.

  • PDF

The SL1 Stem-Loop Structure at the 5′-End of Potato virus X RNA Is Required for Efficient Binding to Host Proteins and forViral Infectivity

  • Kwon, Sun-Jung;Kim, Kook-Hyung
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.63-75
    • /
    • 2006
  • The 5′-region of Potato virus X (PVX) RNA, which contains an AC-rich, single-stranded region and stem-loop structure 1 (SL1), affects RNA replication and assembly. Using Systemic Evolution of Ligands by EXponential enrichment (SELEX) and the electrophoretic mobility shift assay, we demonstrate that SL1 interacts specifically with tobacco protoplast protein extracts (S100). The 36 nucleotides that correspond to the top region of SL1, which comprises stem C, loop C, stem D, and the tetra loop (TL), were randomized and bound to the S100. Remarkably, the wild-type (wt) sequence was selected in the second round, and the number of wt sequences increased as selection proceeded. All of the selected clones from the fifth round contained the wt sequence. Secondary structure predictions (mFOLD) of the recovered sequences revealed relatively stable stem-loop structures that resembled SL1, although the nucleotide sequences therein were different. Moreover, many of the clones selected in the fourth round conserved the TL and C-C mismatch, which suggests the importance of these elements in host protein binding. The SELEX clone that closely resembled the wt SL1 structure with the TL and C-C mismatch was able to replicate and cause systemic symptoms in plants, while most of the other winners replicated poorly only on inoculated leaves. The RNA replication level on protoplasts was also similarly affected. Taken together, these results indicate that the SL1 of PVX interacts with host protein(s) that play important roles related to virus replication.

Persistent Infection of Marine Birnavirus and its Status of Infection in Cells (잠복감염시의 해양버나바이러스의 세포내에서의 동태)

  • Jung, Sung-Ju;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • The objective of the study was to clarify the mechanism of persistent infection of marine birnavirus (MABV) in various nonpermissive cell lines. It was observed in CHSE-214, RTG-2 and RSBK-2 that the virus produced at high yield with typical cytopathic effect (CPE). On the contrary, the CPE was not produced in EPC, FHM and BF-2 cells. However amount of virus protein in both permissive and nonpermissive cell lines detected by ELISA was almost the same. Electron microscopy showed virions in permissive cells but not in nonpermissive cells. From the results, it is clear that virus protein and RNA were produced in nonpermissive cells as observed in permissive cells; however, assembly of the virus particles did not occur in nonpermissive cells.

Transcriptional Regulation of the Glial Cell-Specific JC Virus by p53

  • Kim, Hee-Sun;Woo, Moom-Sook
    • Archives of Pharmacal Research
    • /
    • v.25 no.2
    • /
    • pp.208-213
    • /
    • 2002
  • The human polyomavirus JC virus is the etiologic agent of progressive multifocal leukoencephalopathy (PML). As the JC virus early promoter directs cell-specific expression of the viral replication factor large T antigen, transcriptional regulation constitutes a major mechanism of glial tropism in PML. It has been demonstrated that SV4O or JC virus large T antigen interacts with p53 protein and regulates many viral and cellular genes. In this study we founts that p53 represses the JC virus early promoter in both glial and nonglial cells To identify the cis-regulatory elements responsible for p53-mediated repression, deletional and site-directed mutational analyses were performed . Deletion of the enhancer region diminished p53-mediated transcriptional repression. However, point mutations of several transcription factor binding sites in the basal promoter region did not produce any significant changes. In support of this observation, when the enhancer was fused to a heterologous promoter, p53 red reduced the promoter activity about three fold. These results indicate that the enhancer region is important for tole repression of JC virus transcription by p53. Furthermore, coexpression of JC virus T antigen with a p53 protein abolished p53-mediated repression of the JC virus early promoter in non-glial cells, but not in glial cells. This finding suggests that T antigen interacts with p53 and regulates JC virus transcription in a cell-specific manner.

A Protein Kinase-A Inhibitor, KT5720, Suppressed Cytopathic Effect Caused by Vesicular Stomatitis Virus (Protein Kinase Inhibitor, KT5720의 VSV에 의한 세포변성 억제 연구)

  • Kim, Young-Sook
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1361-1367
    • /
    • 2007
  • I investigated the effect of KT5720, an inhibitor of protein kinase A, on the vesicular stomatitis virus (VSV) infection in BHK-21cell cultures. The virus inducted cytopathic effect (CPE) was almost completely suppressed by KT5720 at 5uM. The inhibitor, however, did not affect replication of the virus nor the synthesis of viral macromolecules. KT5720, did not block the cytoskeletal disruption, while the cell rounding was suppressed. And, the KT5720-sensitive function may be involved in developing the VSV-induced CPE, but not essential for the virus replications.

Pathogenicity and localization of the tobacco mosaic virus 4.8 kDa protein(oral)

  • Palukaitis, P.;Canto, T.;MacFarlane Scottish, S.A.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.65.1-65
    • /
    • 2003
  • In addition to the five well-characterized genes of Tobacco mosaic virus (TMV), this virus contains a sixth open reading frame (ORF6) that encodes a 4.8 kDa protein. TMV ORF6 overlaps the ORFs encoding the 30 kDa movement protein and the adjacent 17.5 kDa capsid protein. Although the 4.8 kDa protein could not be detected in vivo, alteration of the AUG codons of this ORF resulted in a mutant virus that attenuated the virulence of the mutated TMV in Nicotiana benthamiana, but not N. tabacum (tobacco). These sequence changes did not affect either the replication or movement of the mutated TMV. Expression of TMV ORF6 from the virus expression vector Potato virus X (PVX) intensified the virulence of this virus in N. benthmiana, but not tobacco, while expression of TMV ORF6 from the virus expression vector Tobacco rattle virus enhanced the pathogenicity observed in both N. benthamima and tobacco. Thus, the TMV ORF6 is a host- and virus-specific. virulence factor. However, two separate assays indicated that the TMV 4.8 kDa protein was not a suppression of RNA silencing. A fusion protein formed between the TMV 4.8 kDa protein and the green fluorescent protein was expressed from the PVX vector and localized to plasmodesmata. Possible roles of the 4.8 kDa protein in pathogenicity will be discussed

  • PDF

Therapeutic Effect of Oncolytic Herpes Simplex Virus on Induced Radioresistant Head and Neck Squamous Cell Carcinoma (방사선 치료에 내성이 유도된 두경부 편평세포암에 대한 종양살상 헤르페스 바이러스의 유전자 치료 효과)

  • Kim, Se-Heon;Choi, Eun-Chang;Lee, Jin-Seok;Chun, Je-Young;Byun, Hyung-Kwon;Song, Ki-Jae;Kim, Kwang-Moon
    • Korean Journal of Head & Neck Oncology
    • /
    • v.22 no.2
    • /
    • pp.130-136
    • /
    • 2006
  • Introduction : The sensitivity of tumor cells to radiotherapy is a critical determinant of local control and potential cure in advanced head and neck squamous cell carcinoma(HNSCC). The emergence of radioresistant tumor cells is an obstacle to cancer therapy. Most radioresistant cells have a higher proportion of cells in the Sphase of the cell cycle and a lower apoptotic fraction than radiosensitive cells. HSV replication is increased in cells that have higher S-phase fractions. NV1066 is an oncolytic herpes simplex virus type-1 mutant. We hypothesized that NV1066 replication and cytotoxicity are increased in radioresistant cells. The purpose of this study is to evaluate the antitumor efficacy of NV1066 to treat radioresistant HNSCC. Methods : Radioresistant cells were selected by treating five HNSCC cell lines with repeated conventional fractionated doses of radiation(2Gy/day), using a Cs-137 irradiator, up to a cumulative dose of 70Gy. Clonogenic cell survival and S-phase fractions were compared between radioresistant and parental radiosensitive cells. The two cell populations were then treated with NV1066 to examine viral replication, by the viral plaque assay and viral cytotoxicity. Results : Fractionated irradiation resulted in the selection of radioresistant cells. Radioresistant cells had a higher S-phase fraction(42.9%) compared to parental cells(26.2%). NV1066 replication in radioresistant cells was 7.4 times higher than in parental cells(p<0.01). Treatment with NV1066 resulted in increased cytotoxicity of 24.5% in radioresistant cells compared to parental cells(p<0.05). Conclusion : NV1066 showed increased viral replication and cytotoxicity in radioresistant HNSCC cell lines. These findings suggest a potential clinical application for this oncolytic viral therapy as treatment for radioresistant head and neck cancers.

Pathogenesis, Dianosis, and Prophylactic Vaccine Development for Foot-and-Mouth Disease (구제역의 병리기전 및 진단, 예방백신 개발)

  • Moon, Sun-Hwa;Yang, Joo-Sung
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.301-310
    • /
    • 2005
  • Foot-and-mouth disease (FMD) is a highly contagious disease of mammals and has a great potential for causing severe economic loss in susceptible cloven-hoofed animals, such as cattle, pigs, sheep, goats and buffalo. FMDV, a member of the Aphthovirus genus in the Picornaviridae family, is a non-enveloped icosahedral virus that contains a positive sense RNA of about 8.2 kb in size. The genome carries one open reading frame consisting of 3 regions: capsid protein coding region P1, replication related protein coding region P2, and RNA-dependent RNA polymerase coding region P3. FMDV infects pharynx epithelial cell in the respiratory tract and viral replication is active in lung epithelial cell. Morbidity is extremely high. A FMD outbreak in Korea in 2002 caused severe economic loss. Although intense research is undergoing to develop appropriate drugs to treat FMDV infection, there is no specific therapeutic for controlling FMDV infection. Moreover, there is an increasing demand for the development of vaccine strategies against FMDV infection in many countries. In this report, more effective prevention strategies against FMDV infection were reviewed.

Cytolytic Effects of an Adenoviral Vector Containing L-Plastin Promoter Regulated E1A in Hepatocellular Carcinoma Cells

  • Chung, In-Jae
    • Biomolecules & Therapeutics
    • /
    • v.14 no.3
    • /
    • pp.148-151
    • /
    • 2006
  • We have previously reported that 2.4 kb of L-plastin promoter (LP) could regulate the expression of adenoviral vector (AV) exogenous genes in a tumor cell specific manner. In the present study, we tested if the replication competent AdLPE1A vector results in a direct cytotoxic effect in hepatocelluar carcinoma (HCC) cells. In vitro cytotoxicity tests were carried out with replication-competent (AdLPE1A) and -incompetent (AdLPCD) LP-driven vectors. AdLPE1A is an AV in which LP was inserted 5' to the E1A and E1B genes. The AdLPCD vector contains LP and the E. coli cytosine deaminase (CD) gene in transcription unit. Exposure of cells to AdLPE1A generated a significant cytotoxic effect as compared to the control. Almost 90% of the cell had manifested the characteristic cytopatic effect on day 9 after infection of cells with 10 MOI of AdLPE1A. On the other hand, almost 35% of the cells were left when the cells had been treated with 100 MOI of AdLPCD together with 5-FC on day 9 when compared with the cells which had never been exposed neither 5-FC nor AdLPCD. These results showed that the replication competent AdLPE1A vector could kill the HepG2 cells directly by the oncolytic effect of the virus. The replication competent AV vector carrying viral E1A generated greater cytotoxic effect than the replication incompetent AV, which contains the CD prodrug activation transcription unit without E1A, in HepG2 cells.