• Title/Summary/Keyword: virus movement

Search Result 93, Processing Time 0.038 seconds

Role of 5'-UTR hairpins of the Turnip yellow mosaic virus RNA in replication and systemic movement

  • Shin, Hyun-Il;Cho, Nam-Jeong;Cho, Tae-Ju
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.778-783
    • /
    • 2008
  • Turnip yellow mosaic virus (TYMV) RNA has two hairpins in its 5' untranslated region (5'-UTR). To investigate the role of the hairpins in replication of TYMV, mutants lacking one or both of the two hairpins were constructed. The TYMV constructs were introduced into Chinese cabbage by an Agrobacterium-mediated T-DNA transfer method, called agroinfiltration. Analysis of total RNA from agroinfiltrated leaves showed that replication of the mutant TYMV RNA lacking both hairpins was about 1/100 of wild type. This mutant was also impaired in systemic spread. Deletion analysis of each hairpin revealed that both hairpins were needed for maximal replication. The deletion analysis along with sequence modification of the hairpin structure indicates that the second hairpin plays a role in efficient long-distance systemic movement of TYMV.

Functional Analysis of the Tomato Spotted Wilt Virus(TSWV) NSm Protein by Using Immunoblotting and Immunogold Labelling Assay

  • Choi, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.468-473
    • /
    • 1996
  • The genome of tomato spotted wilt virus (TSWV) is composed of three RNA segments, S, M, and L RNA and the 5.0 kb M RNA encodes two glycoproteins Gl, G2 and NSm protein of unknown function. In an effort to investigate the function of the NSm protein, antibody was raised against NSm fusion protein overexpressed in Escherichia coli. This antibody was used to detect the NSm protein by using western blot analysis and electron microscopic observation after immunogold labelling. For the cloning of the NSm gene, total RNA extracted from a TSWV infected plant was used for cDNA synthesis and polymerase chain reaction (PCR) instead of going through time-consuming virus purification. A protein band specifically reacting to the NSm antibody was detected from TSWV inoculated plants. The NSm protein was detected in the cell wall fraction and in pellet from low speed centrifugation when the infected plant tissue was fractionated into 4 fractions. In the immuno-electron microscopic observation, gold particles were found around the plasmodesmata of infected plant tissue. These results suggest that the NSm protein of TSWV plays some role in cell-to-cell movement of this virus.

  • PDF

Production of Polyclonal Antibody against Grapevine fanleaf virus Movement Protein Expressed in Escherichia coli

  • Koolivand, Davoud;Bashir, Nemat Sokhandan;Behjatnia, Seyed Aliakbar;Joozani, Raziallah Jafari
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.452-459
    • /
    • 2016
  • The genomic region of Grapevine fanleaf virus (GFLV) encoding the movement protein (MP) was cloned into pET21a and transformed into Escherichia coli strain BL21 (DE3) to express the protein. Induction was made with a wide range of isopropyl-${\beta}$-D-thiogalactopyranoside (IPTG) concentrations (1, 1.5, and 2 mM) each for duration of 4, 6, or 16 h. However, the highest expression level was achieved with 1 mM IPTG for 4 h. Identity of the expressed protein was confirmed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) followed by Western blotting. The expressed 41 kDa protein was purified under denaturing condition by affinity chromatography, reconfirmed by Western blotting and plate-trapped antigen enzyme-linked immunosorbent assay (PTA-ELISA) before being used as a recombinant antigen to raise polyclonal antibodies in rabbits. Purified anti-GFLV MP immunoglobulines (IgGs) and conjugated IgGs detected the expressed MP and GFLV virions in infected grapevines when used in PTA-ELISA, double antibody sandwich-ELISA, and Western blotting. This is the first report on the production of anti-GFLV MP polyclonal antibodies and application for the virus detection.

The Use of a Tobacco mosaic virus-Based Expression Vector System in Chrysanthemum

  • Park, Minju;Baek, Eseul;Yoon, Ju-Yeon;Palukaitis, Peter
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.429-433
    • /
    • 2017
  • Chrysanthemums (Chrysanthemum morifolium) are susceptible to tobacco mosaic virus (TMV). TMV-based expression vectors have been used in high-throughput experiments for production of foreign protein in plants and also expressing green fluorescent protein (GFP) to allow visualization of TMV movement. Here, we used TMV expressing the GFP to examine the infection of chrysanthemum by a TMV-based expression vector. Viral replication, movement and GFP expression by TMV-GFP were verified in upper leaves of chrysanthemums up to 73 days post inoculation (dpi) by RT-PCR. Neither wild-type TMV nor TMV-GFP induced symptoms. GFP fluorescence was seen in the larger veins of the inoculated leaf, in the stem above the inoculation site and in petioles of upper leaves, although there was no consistent detection of GFP fluorescence in the lamina of upper leaves under UV. Thus, a TMV-based expression vector can infect chrysanthemum and can be used for the in vivo study of gene functions.

Pathogenic effects of porcine reproductive and respiratory syndrome virus isolates in swine tracheal ring culture

  • Park, Bong-kyun;Collins, James E.;Goyal, Sagar M.;Pijoan, Carlos;Joo, Han-soo
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.2
    • /
    • pp.311-317
    • /
    • 1999
  • Pathogenic effects of 29 different porcine reproductive and respiratory syndrome(PRRS) virus isolates were investigated in swine tracheal ring(STR) cultures by examining their effects on the ciliary activity of STR. Inhibition of ciliary movement and destruction of the tracheal epithelium were seen between 72 and 96 hours postinoculation(PI). Virus replication was demonstrated by examining viral infectivity of the supernatants from the STR cultures. PRRS virus antigen in macrophages was detected by a streptavidin-biotin complex(ABC) immunoperoxidase method. Of the 29 PRRS virus isolates, 8 isolates were classified into pathogenic, and the remaining 21 isolates were determined as mildly pathogenic or apathogenic viruses. These results suggest that STR examination may be used as a method for predicting pathogenic variability of PRRS virus isolates.

  • PDF

Pseudomonas oleovorans Strain KBPF-004 Culture Supernatants Reduced Seed Transmission of Cucumber green mottle mosaic virus and Pepper mild mottle virus, and Remodeled Aggregation of 126 kDa and Subcellular Localization of Movement Protein of Pepper mild mottle virus

  • Kim, Nam-Gyu;Seo, Eun-Young;Han, Sang-Hyuk;Gong, Jun-Su;Park, Cheol-Nam;Park, Ho-Seop;Domier, Leslie L;Hammond, John;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.393-401
    • /
    • 2017
  • Efforts to control viral diseases in crop production include several types of physical or chemical treatments; antiviral extracts of a number of plants have also been examined to inhibit plant viral infection. However, treatments utilizing naturally selected microorganisms with activity against plant viruses are poorly documented. Here we report isolation of a soil inhabiting bacterium, Pseudomonas oleovorans strain KBPF-004 (developmental code KNF2016) which showed antiviral activity against mechanical transmission of tobamoviruses. Antiviral activity was also evaluated in seed transmission of two tobamoviruses, Pepper mild mottle virus (PMMoV) and Cucumber green mottle mosaic virus (CGMMV), by treatment of seed collected from infected pepper and watermelon, respectively. Pepper and watermelon seeds were treated with culture supernatant of P. oleovorans strain KBPF-004 or control strain ATCC 8062 before planting. Seeds germinated after treatment with water or ATCC 8062 yielded about 60% CGMMV or PMMoV positive plants, whereas < 20% of KBPF-004-treated seeds were virus-infected, a significantly reduced seed transmission rate. Furthermore, supernatant of P. oleovorans strain KBPF-004 remodeled aggregation of PMMoV 126 kDa protein and subcellular localization of movement protein in Nicotiana benthamiana, diminishing aggregation of the 126 kDa protein and essentially abolishing association of the movement protein with the microtubule network. In leaves agroinfiltrated with constructs expressing the coat protein (CP) of either PMMoV or CGMMV, less full-size CP was detected in the presence of supernatant of P. oleovorans strain KBPF-004. These changes may contribute to the antiviral effects of P. oleovorans strain KBPF-004.

Variation in the Pathogenicity of Lily Isolates of Cucumber mosaic virus

  • Lee, Jin-A;Choi, Seung-Kook;Yoon, Ju-Yeon;Hong, Jin-Sung;Ryu, Ki-Hyun;Lee, Sang-Yong;Choi, Jang-Kyung
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.251-259
    • /
    • 2007
  • Two isolates of Cucumber mosaic virus (CMV) originated from lily plants, named Ly2-CMV and Ly8-CMV, were compared with their pathological features in several host plants. Ly2-CMV and Ly8-CMV could induce systemic mosaic symptom in Nicotiana benthamiana, but Ly2-CMV could not systemically infect tomato and cucumber plants that have been used for CMV-propagative hosts. While Fny-CMV used as a control infected systemically the same host plants, producing typical CMV symptoms. Ly8-CMV could infect systemically two species of tobacco (N. tabacum cv. Xanthi-nc and N. glutinosa) and zucchini squash (Curcubita pepo), but Ly2 failed systemic infection on these plants. As resulted from tissue-print immunoblot assay, different kinetics of systemic movement between Ly2-CMV and Ly8-CMV were crucial for systemic infection in tobacco (cv. Xanthi-nc). Sequence analysis of full-length genome of two lily isolates showed Ly2 and Ly8 belonged to subgroup IA of CMV. The lily isolates shared overall 98 % sequence identity in their genomes. Coat protein, 3a protein, and 2b protein involved in virus movement was highly conserved in genomes of the isolates Ly2 and Ly8. Although there is the low frequency of recombinants and reassortants in natural CMV population, phylogenetic analysis of each viral protein among a number of CMV isolates suggested that genetic variation in a defined population of CMV lily isolates was stochastically produced.

Analysis of Symptom Determinant of Cucumber mosaic virus RNA3 via Pseudorecombinant Virus in Zucchini Squash

  • Choi, Seung-Kook;Yoon, Ju-Yeon;Choi, Jang-Kyung;Kim, Kook-Hyung;Sohn, Seong-Han
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.272-280
    • /
    • 2007
  • Isolates of Cucumber mosaic virus (CMV) collected in Korea, were compared with their pathological features in tobacco and zucchini squash. Full-length cDNA clone of RNA3 was generated by using long-distance RT-PCR. Transcript RNA3 from the cDNA clone was inoculated onto host plants with transcripts RNA1 and RNA2 of Fny strain, generating RNA3-pseudorecombinant CMV. Timing and severity of systemic symptom was not significantly different among the pseudorecombinant CMVs in tobacco, compared with strains Fny-CMV and Pf-CMV. However, the pseudorecombinant CMVs induced two different systemic symptoms (mosaic vs. chlorotic spot) in zucchini squash. Based on symptom induction, the pseudorecombinant CMVs were categorized into two classes. The severity and timing of symptoms were correlated with viral RNA accumulations in systemic leaves of zucchini squash, suggesting that different kinetics of virus movement associated with CMV proteins are crucial for systemic infection and symptom development in zucchini squash. The analysis of movement proteins (MP) of CMV strains showed high sequence homology, but the differences of several amino acids were found in the C-terminal region between Class-I-CMV and Class-II-CMV. The analysis of coat proteins (CP) showed that the CMV isolates tested belonged to CMV subgroup I and the viruses shared overall 87-99% sequence identity in their genomes. Phylogenetic analysis of MP and CP suggested that biological properties of Korean CMV isolates have relationships associated with host species.

Plant Disease Caused by Cucumber Mosaic Cucumovirus - Potential Role of Genes Associated with Symptom - (Cucumber Mosaic Cucumovirus에 의한 식물의 병 - 병징관련 유전자의 기능을 중심으로 -)

  • 최장경;김혜자
    • Plant Disease and Agriculture
    • /
    • v.5 no.1
    • /
    • pp.14-19
    • /
    • 1999
  • Cucumber mosaic cucumovirus (CMV) is an isometric plant virus with functionally divided genomic RNAs and a broad host range. RNA 1 and RNA 2 each encode one protein, both of which are essential for replication. RNA 3 encodes the viral coat protein and an additional protein thought to be involved in potentiating the cell-to-cell movement of the virus. Functions of the RNAs have been confirmed using a pseudorecombinant virus constructed with infectious cDNA-derived transcripts of the RNAs. Generally, CMV produces different symptoms in various host plants depending on the virus strains. In this mini-review, we describe the potential role of the genes associated with symptom expression of CMV RNAs.

  • PDF