• 제목/요약/키워드: virulence factor genes

검색결과 72건 처리시간 0.022초

A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant

  • Hyoung Ju Lee;Sang-Moo Lee;Minseo Choi;Joo Hwan Kwon;Seon-Woo Lee
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.417-429
    • /
    • 2023
  • Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogencontaining heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPSdefective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.

Role of Alkaline Serine Protease, Asp, in Vibrio alginolyticus Virulence and Regulation of Its Expression by LuxO-LuxR Regulatory System

  • Rui, Haopeng;Liu, Qin;Wang, Qiyao;Ma, Yue;Liu, Huan;Shi, Cunbin;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권5호
    • /
    • pp.431-438
    • /
    • 2009
  • The alkaline serine protease asp, which was shown to be a virulence factor of Vibrio alginolyticus as a purified protein, was cloned from V. alginolyticus EPGS, a strain recently isolated from moribund Epinephelus coioides in an outbreak of vibriosis in a mariculture farm of Shenzhen. The asp null mutant was constructed by homologous recombination with suicide plasmid pNQ705-1. Compared with the wild-type strain, the asp null mutant exhibited a significant decrease of total extracellular protease activity, and caused a IS-fold decrease in virulence of V. alginolyticus. In our previous study, the luxO and $luxR_{val}$ genes from V. alginolyticus MVP01 were cloned and identified, and the luxO-$luxR_{val}$ regulatory couple was shown to regulate various genes expression, suggesting that it played a central role in the quorum sensing system of V. alginolyticus. In this study, the regulation of the asp gene was analyzed by using RT-PCR and quantitative real-time PCR methods; we proved that its transcription was greatly induced at the late stage of growth and was regulated by a luxO-$luxR_{val}$ regulatory system.

Identification of virulence-associated genes of Erwinia amylovora by transposon mutagenesis

  • Seung Yeup Lee;Hyun Gi Kong;In Jeong Kang;Hyeonseok Oh;Hee-Jong Woo;Eunjung Roh
    • 농업과학연구
    • /
    • 제50권2호
    • /
    • pp.241-247
    • /
    • 2023
  • Erwinia amylovora , which causes fire blight disease on apple and pear trees, is one of the most important phytopathogens because of its devastating impact. Currently, the only way to effectively control fire blight disease is through the use of antibiotics such as streptomycin, kasugamycin, or oxytetracycline. However, problems with the occurrence of resistant strains due to the overuse of antibiotics are constantly being raised. It is therefore necessary to develop novel disease control methods through an advanced understanding of the pathogenesis mechanism of E. amylovora . To better understand the pathogenesis of E. amylovora , we investigated unknown virulence factors by random mutagenesis and screening. Random mutants were generated by Tn5 transposon insertion, and the pathogenicity of the mutants was assessed by inoculation of the mutants on apple fruitlets. A total of 17 avirulent mutants were found through screening of 960 random mutants. Among them, 14 mutants were already reported as non-pathogenic strains, while three mutants, TS3128_M2899 (ΔSUFU ), TS3128_M2939 (ΔwcaG ), and TS3128_M3747 (ΔrecB ), were not reported. Further study of the association between E. amylovora pathogenicity and these 3 novel genes may provide new insight into the development of control methods for fire blight disease.

Bacillus subtilis와 Listeria monocytogenes의 일반 스트레스반응의 비교 (Comparison of the ${\sigma}^B$-Dependent General Stress Response between Bacillus subtilis and Listeria monocytogenes)

  • 신지현
    • 미생물학회지
    • /
    • 제45권1호
    • /
    • pp.10-16
    • /
    • 2009
  • 일부 그람양성세균들은 고온, 저온, 염, 에탄올, 산소와 영양분 고갈과 같은 다양한 스트레스 상태에 노출되면, 일반 스트레스반응(general stress response)에 의해서 일련의 스트레스 단백질군을 발현시켜 외부 스트레스를 극복하고 세균의 생존력을 증가시킨다. 비병원성균인 Bacillus subtilis의 일반 스트레스반응에 관해서는 많은 연구가 이루어져 있으므로 다른 균의 연구모델로 이용이 가능하다. 본 총설에서는 B. subtilis와 병원성균인 Listeria monocytogenes의 일반 스트레스반응의 유사성과 차이점을 B. subtilis를 모델로 하여 비교하였다. 두 균의 일반 스트레스반응은 대체 전사 인자인 ${\sigma}^B$ (alternative transcription factor sigma B)에 의해서 조절되고 신호전달 네트워크 또한 매우 유사하며, ${\sigma}^B$ 의존성 유전자들에 의해 150여 개의 스트레스 단백질들이 발현된다. 그러나 L. monocytogenes는 B. subtilis의 에너지 스트레스 신호 경로를 가지고 있지 않은 점과, 일반 스트레스반응에 의해 병독 유전자들(virulence genes)이 조절되는 것이 가장 큰 차이점이다. 그러므로 L. monocytogenes의 생리 및 병원성 규명을 위해서는 일반 스트레스반응에 관한 이해가 매우 중요하다.

luxS and smcR Quorum-Sensing System of Vibrio vulnificus as an Important Factor for In Vivo Survival

  • SHIN NA-RI;BAEK CHANG-HO;LEE DEOG-YONG;CHO YOUNG-WOOK;PARK DAE-KYUN;LEE KO-EUN;KIM KUN-SOO;YOO HAN-SANG
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1197-1206
    • /
    • 2005
  • Vibrio vulnificus is an opportunistic pathogen that causes a septicemia and expresses numerous virulence factors, in which luxS and smcR are genes encoding for components responsible for quorum-sensing regulation. In the present study, null mutants were constructed with lesions in each or both of these two genes from the V. vulnificus Vv$\Delta$Z strain, which is a lacZ$^{-}$ and chloramphenicol/streptomycin-resistant derivative of the wild-type ATCC29307 strain, and their phenotypes related to virulence were compared with those of the parental cells. $LD_{50}$ and histopathological findings of luxS-, smcR-, or luxS- smcR- deficient mutant were not different from those of the parent strain, a lacZ-deficient streptomycin-resistant strain in mice. However, time of death in mice was delayed, and numbers of bacteria survived in bloodstream after intraperitoneal injection in mice were decreased by mutation, especially luxS and smcR double mutant (VvSR$\Delta$ZSR). These phenomena were supported by increased serum sensitivity and delayed bacterial proliferation in both murine blood and iron-restricted medium. These results suggest that the luxS and luxR homologous genes in V. vulnificus could playa role in bacterial survival in host by enhancing proliferation and adjusting to changed environment.

자돈 분변 유래 병원성 대장균의 병원성 인자 및 항생제 내성 양상 (Virulence factors and antimicrobial resistance patterns of pathogenic Escherichia coli isolated from fecal samples of piglets)

  • 신현숙;김근호;서진성;김영욱;임숙경;정병열
    • 한국동물위생학회지
    • /
    • 제46권1호
    • /
    • pp.35-45
    • /
    • 2023
  • Pathogenic Escherichia coli is the cause of a wide range of diseases in pigs, including diarrhea, edema disease, and septicemia. Diarrhea caused E. coli may result in significant economic losses, making pathogenic E. coli an important pathogen for the swine industry. This study investigated the prevalence of virulence factor genes, antimicrobial resistance phenotypes, and resistance genes in E. coli isolated from feces of piglets in Korea between 2017 and 2020. As a result, 119 pathogenic E. coli isolates were obtained from 601 fecal samples. The F4 adhesin gene and the STb enterotoxin gene were commonly present in E. coli isolated from diarrhea samples. The dominant virulotypes of isolates from diarrhea samples were STb, Stx2e, and F4:LT:STb. More than 80% of the screened isolates were resistant to ampicillin, sulfisoxazole, chloramphenicol, or tetracycline. To confirm the resistance mechanisms for β-lactam or quinolone, we investigated the genotypic factors of resistance. Each of the ceftiofur-resistant E. coli produced an extended-spectrum β-lactamase encoded by blaCTX-M-14, blaCTX-M-27, and blaCTX-M-55. And all ciprofloxacin-resistant E. coli harbored mutations in quinoloneresistance-determining-regions. In addition, some of the ciprofloxacin-resistant E. coli contained the plasmid-mediated-quinolone-resistance genes such as qepA, qnrB1, or qnrD. This study has confirmed that the F4 fimbria and the STb enterotoxin are the most predominant in pathogenic E. coli isolated from piglets with diarrhea in Korea and there is a great need for responsible and prudent use of antimicrobials to treat colibacillosis.

대장균의 항균제 내성과 독력 유전자의 분석을 활용한 융합기술연구 (Study on Convergence Technique Using the Antimicrobial Resistance and Virulence Genes Analysis in Escherichia coli)

  • 한재일;성현호;박창은
    • 한국융합학회논문지
    • /
    • 제6권5호
    • /
    • pp.77-84
    • /
    • 2015
  • 본 연구는 항균제에 내성을 보이는 대장균의 특성을 알아보기 위해 설사환자에서 분리된 대장균에 대한 항균제 감수성 및 병원성 인자의 상관성을 분자융합적 기술을 통해 조사하였다. 분리한 대장균의 항균제 내성은 60주에서 ESBL(extendede spectrum ${\beta}$-lactamase) positive균주가 8주이고, negative균주는 52주였다. ESBL 양성 8주 중 2주는 병원성 유전자가 검출되지 않았으며, stb(3주), flich7(1주), flich7-eae(2주)로 나타났다. ESBL 음성 52주 중 26주는 병원성 유전자가 검출되지 않았고, stx1(3주), stb(10주), flich7 및 eae(각 2주), stx1-flich7(2주), stx1-stb(4주), flich7-stb(2주), flich7-stb-eae(1주)이었다. 결론적으로 항균제 내성이 증가하는 시대에 분자 융합적 관점에서 독력 유전자의 분포와 항균제 내성과의 관계는 적게 나타났으나, 향후 다양한 독력 유전자의 분석을 통한 융합기술연구가 이루어진다면 보다 정확한 병원성 인자를 추정할 수 있을 것으로 사료된다.

Serum Resistance in Riemerella anatipestifer is Associated with Systemic Disease in Ducks

  • Wei, Bai;Seo, Hye-Suk;Shang, Ke;Zhang, Jun-feng;Park, Jong-Yeol;Lee, Yea-Jin;Choi, Yu-ri;Kim, Sang-Won;Cha, Se-Yeoun;Jang, Hyung-Kwan;Kang, Min
    • 한국가금학회지
    • /
    • 제48권4호
    • /
    • pp.327-335
    • /
    • 2021
  • 리메렐라 아나티페스티퍼 감염증은 오리와 거위에서 섬유소성 심막염, 간주위염증, 기낭염, 건락성난관염, 뇌막염을 특징으로 하는 급성 또는 만성 패혈증이다. 이 균은 혈청형 또는 분리주별로 병원성에 큰 차이가 나타나는 것으로 알려져 있다. 그럼에도 불구하고 지금까지 이러한 다양한 병원성과 그 이유에 대한 연구는 거의 이루어지지 않았다. 본 연구에서는 리메렐라 아나티페스티퍼의 병원성과 serum resistance 상관성을 구명하였다. 우리는 다양한 분리원으로부터 확보한 130주의 균주를 대상으로 serum resistance 특성을 분석하였다. 건강한 오리 인후두에서 분리된 균주들은 혈청에 대한 감수성이 높은 반면에 전신감염을 일으킨 균주들은 강한 serum resistance를 보였다. 또한 우리는 이러한 혈청의 살균효과가 혈청내 보체 성분에 의해 유도됨을 확인하였다. 강한 serum resistance를 유발하는 세균의 표면 유전자와의 관련성을 조사한 결과, 외막 단백질의 AS87_09335, AS87_00480, AS87_05195 유전자가 serum resistance와 관련 있음을 알 수 있었다. 본 연구 결과로 serum resistance 특성이 리메렐라 아나티페스티퍼의 병원성 결정 요소 중 하나라는 것을 확인하였다.

Genome Sequence of Bacillus cereus FORC_021, a Food-Borne Pathogen Isolated from a Knife at a Sashimi Restaurant

  • Chung, Han Young;Lee, Kyu-Ho;Ryu, Sangryeol;Yoon, Hyunjin;Lee, Ju-Hoon;Kim, Hyeun Bum;Kim, Heebal;Jeong, Hee Gon;Choi, Sang Ho;Kim, Bong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2030-2035
    • /
    • 2016
  • Bacillus cereus causes food-borne illness through contaminated foods; therefore, its pathogenicity and genome sequences have been analyzed in several studies. We sequenced and analyzed B. cereus strain FORC_021 isolated from a sashimi restaurant. The genome sequence consists of 5,373,294 bp with 35.36% GC contents, 5,350 predicted CDSs, 42 rRNA genes, and 107 tRNA genes. Based on in silico DNA-DNA hybridization values, B. cereus ATCC $14579^T$ was closest to FORC_021 among the complete genome-sequenced strains. Three major enterotoxins were detected in FORC_021. Comparative genomic analysis of FORC_021 with ATCC $14579^T$ revealed that FORC_021 harbored an additional genomic region encoding virulence factors, such as putative ADP-ribosylating toxin, spore germination protein, internalin, and sortase. Furthermore, in vitro cytotoxicity testing showed that FORC_021 exhibited a high level of cytotoxicity toward INT-407 human epithelial cells. This genomic information of FORC_021 will help us to understand its pathogenesis and assist in managing food contamination.

Identification of Enterococcus faecalis antigens specifically expressed in vivo

  • Lee, Seok-Woo;Shet, Uttom K.;Park, Sang-Won;Lim, Hyun-Pil;Yun, Kwi-Dug;Kang, Seong Soo;Kim, Se Eun
    • Restorative Dentistry and Endodontics
    • /
    • 제40권4호
    • /
    • pp.306-313
    • /
    • 2015
  • Objectives: Molecular mechanism of the pathogenicity of Enterococcus faecalis (E. faecalis), a suspected endodontic pathogen, has not yet been adequately elucidated due to limited information on its virulence factors. Here we report the identification of in vivo expressed antigens of E. faecalis by using a novel immunoscreening technique called change-mediated antigen technology (CMAT) and an experimental animal model of endodontic infection. Materials and Methods: Among 4,500 E. coli recombinant clones screened, 19 positive clones reacted reproducibly with hyperimmune sera obtained from rabbits immunized with E. faecalis cells isolated from an experimental endodontic infection. DNA sequences from 16 of these in vivo-induced (IVI) genes were determined. Results: Identified protein antigens of E. faecalis included enzymes involved in housekeeping functions, copper resistance protein, putative outer membrane proteins, and proteins of unknown function. Conclusions: In vivo expressed antigens of E. faecalis could be identified by using a novel immune-screening technique CMAT and an experimental animal model of endodontic infection. Detailed analysis of these IVI genes will lead to a better understanding of the molecular mechanisms involved in the endodontic infection of E. faecalis.