• 제목/요약/키워드: virtual surgery

검색결과 148건 처리시간 0.029초

가상현실을 이용한 치과 임플란트 수술 교육 (Virtual Reality for Dental Implant Surgical Education)

  • 문성용;최봉두;문영래
    • 전자공학회논문지
    • /
    • 제53권12호
    • /
    • pp.169-174
    • /
    • 2016
  • 본 연구에서는 실제적인 환자의 모델을 바탕으로 가상현실 기반의 수술환경을 제작하는 방법에 대한 고찰과 함께 치과 임플란트 수술 술기를 배울 수 있는 가상현실을 활용한 수술 모델에 대한 평가를 시행하고자 한다. 환자의 안면 해부학적 모델은 실제 환자의 CT 데이터를 바탕으로 안면부위 골에 대한 삼차원 모델을 먼저 완성한 후 각각의 근육을 표현하고 안면부에 대한 삼차원 스캔 그리고 치아의 3차원 스캔 후 모델링을 통해 각각의 해부학적 구조물을 표현하였다. Unity3D를 활용해 단계별 시나리오를 게임으로 구성하였다. 처음 절개를 시행하는 단계에서부터 환자의 현재 상태에 필요한 상악동 거상술에 대한 술기를 표현하고, 임플란트 식립과정 그리고 골이식술을 하는 과정을 단계별로 포함하였다. 단계별로 중요한 과정의 효과적인 습득을 위해 HMD(Head Mount Display) 및 Leap motion과 연동하여 3차원 모델에 기구를 위치시키고 수술행위를 재현해볼 수 있게하여 몰입감을 높이면서 실제 수술을 하고있는 느낌을 재현하고자 하였다. 총 20명의 수련의를 대상으로 가상현실 시뮬레이션을 수행한 후에 설문조사를 시행하였다. 임플란트 수술 교육 프로그램은 치과 대학생들과 수련의들의 교육 도구로서 수술 술기를 습득하고 평가하는데 사용할 수 있는 가능성을 보여주었다. 통상적으로 수술 술기 교육 방법이 많지 않은 현실에서 HMD 와 Leap motion이라는 비교적 저렴한 기기를 이용하여 몰입감을 높일 수 있는 가상현실 기반의 수술 교육은 장점이 있다고 말할 수 있다.

가상현실을 이용한 수술 전 안내 및 수술실 환경 체험이 수술 전 정보만족도와 불안 감소에 미치는 효과 (The Effect of Preoperative Guidance and Operating Room Environment Experience Using Virtual Reality on Satisfaction with Preoperative Information and Anxiety Reduction)

  • 오인옥;백은정;정지윤;최은영;김종희;김치향
    • 동서간호학연구지
    • /
    • 제30권1호
    • /
    • pp.51-59
    • /
    • 2024
  • Purpose: The purpose of this study was to determine the effect of preoperative guidance and operating room environment experience using virtual reality on increasing satisfaction with information and reducing anxiety in preoperative patients undergoing general anesthesia and local anesthesia. Methods: A non-equivalent control group quasi-experimental design was employed. The participants were 80 surgical patients from 4 wards (40 experimental group and 40 control group) of the general hospital located in Gyeonggi-do. Data collection was conducted from June to November 2023 after completing the control group survey in January 2023. Data were analyzed using Chi-square, t-test, and Mann-Whitney U test using SPSS 23.0 program. Results: Satisfaction with preoperative information was higher in the experimental group than that of the control group. Additionally, anxiety related to surgery in the experimental group was significantly lower than that of the control group. The preoperative state anxiety score in the experimental group was not significantly lower than that of the control group. Conclusions: These results suggest that providing patient education and information using virtual reality technology can not only alleviate patients' anxiety related to surgery, but also have the potential to be used as an effective intervention to improve positive patient experiences.

Emergence of Online Teaching for Plastic Surgery and the Quest for Best Virtual Conferencing Platform: A Comparative Cohort Study

  • Suvashis Dash;Raja Tiwari;Amiteshwar Singh;Maneesh Singhal
    • Archives of Plastic Surgery
    • /
    • 제50권2호
    • /
    • pp.200-209
    • /
    • 2023
  • Background As the coronavirus disease 2019 virus made its way throughout the world, there was a complete overhaul of our day-to-day personal and professional lives. All aspects of health care were affected including academics. During the pandemic, teaching opportunities for resident training were drastically reduced. Consequently, medical universities in many parts across the globe implemented online learning, in which students are taught remotely and via digital platforms. Given these developments, evaluating the existing mode of teaching via digital platforms as well as incorporation of new models is critical to improve and implement. Methods We reviewed different online learning platforms used to continue regular academic teaching of the plastic surgery residency curriculum. This study compares the four popular Web conferencing platforms used for online learning and evaluated their suitability for providing plastic surgery education. Results In this study with a response rate of 59.9%, we found a 64% agreement rate to online classes being more convenient than normal classroom teaching. Conclusion Zoom was the most user-friendly, with a simple and intuitive interface that was ideal for online instruction. With a better understanding of factors related to online teaching and learning, we will be able to deliver quality education in residency programs in the future.

가상수술기를 위한 비선형 생체 모델의 개발 (Development of a nonlinear biomechanical soft tissue model for a virtual surgery trainer)

  • 김정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.911-914
    • /
    • 2005
  • Soft tissue characterization and modeling based on living tissues has been investigated in order to provide a more realistic behavior in a virtual reality based surgical simulation. In this paper, we characterize the nonlinear viscoelastic properties of intra-abdominal organs using the data from in vivo animal experiments and inverse FE parameter estimation algorithm. In the assumptions of quasi-linear-viscoelastic theory, we estimated the nonlinear material parameters to provide a physically based simulation of tissue deformations. To calibrate the parameters to the experimental results, we developed a three dimensional FE model to simulate the forces at the indenter and an optimization program that updates new parameters and runs the simulation iteratively. The comparison between simulation and experimental behavior of pig intra abdominal soft tissue are presented to provide a validness of the tissue model using our approach.

  • PDF

Development of Tissue-Tool Interaction Simulation Algorithms for Rotator Cuff Surgery Scenario in Arthroscopic Surgery Training Simulator

  • Jo, Kyungmin;Bae, Eunkyung;You, Hyeonseok;Choi, Jaesoon
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권4호
    • /
    • pp.154-164
    • /
    • 2020
  • Various simulator systems for surgery training have been developed and recently become more widely utilized with technology advancement and change in medical education adopting actively simulation-based training. The authors have developed tissue-instrument interaction modeling and graphical simulation algorithms for an arthroscopic surgery training simulator system. In this paper, we propose algorithms for basic surgical techniques, such as cutting, shaving, drilling, grasping, suturing and knot tying for rotator cuff surgery. The proposed method constructs a virtual 3-dimensional model from actual patient data and implements a real-time deformation of the surgical object model through interaction between ten types of arthroscopic surgical tools and a surgical object model. The implementation is based on the Simulation Open Framework Architecture (SOFA, Inria Foundation, France) and custom algorithms were implemented as pulg-in codes. Qualitative review of the developed results by physicians showed both feasibility and limitations of the system for actual use in surgery training.

햅틱 피드백 장치를 이용한 치과 수술 시뮬레이션 (Dental Surgery Simulation Using Haptic Feedback Device)

  • 윤상연;성수경;신병석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권6호
    • /
    • pp.275-284
    • /
    • 2023
  • 가상 현실 시뮬레이션은 다양한 분야에서의 교육과 훈련에 활용이 되며, 특히 최근에는 의료 분야에서 많이 사용되고 있다. 교육/훈련용 시뮬레이터는 의사가 실제 수술 도구를 이용하여 실제 환자에 대해 처치를 하는 것과 같은 느낌이 나게 하는 촉감/역감 생성 및 영상/음향 출력 하드웨어와 여기에 실감 나는 영상과 촉감을 생성해주는 소프트웨어로 이루어진다. 기존의 시뮬레이터들은 수술 시에 사용되는 다양한 수술 도구들을 모사하기 위해 다양한 형태의 하드웨어들을 사용해야 하므로 복잡하고 비용이 많이 소요되는 문제가 있다. 이 논문에서는 포스 피드백 장치와 변형 가능한 햅틱 컨트롤러를 이용한 치과 수술 시뮬레이션 시스템을 제안한다. 햅틱 하드웨어들은 수술 도구와 수술 부위의 충돌 여부를 파악하고 그에 따른 저항감과 진동감을 제공한다. 특히 길이 변화, 굽힘과 같은 변형이 가능한 햅틱 컨트롤러는 여러 수술 도구들의 형태에 따라 느껴지는 다양한 감각을 표현할 수 있다. 사용자가 햅틱 피드백 장치를 조작하면 햅틱 피드백 장치의 움직임이나 버튼 클릭 등의 이벤트가 시뮬레이션 시스템에 전달되어 치과용 수술 도구와 구강 내부 모델들 사이의 상호작용이 발생하고 이에 따른 햅틱 피드백이 햅틱 피드백 장치로 전달된다. 이러한 기반 기술들을 활용하여 정교한 3차원 모델로 표현된 가상 환경에서 대표적인 치과 수술기법인 매복 사랑니 발치 수술의 현실적인 훈련 경험을 제공한다.

가상현실 게임을 적용한 물리치료가 무릎 수술 후 환자의 통증, 기능 변화, 삶의 질, 동기부여에 미치는 영향 (Effects of Physical Therapy Combined with Virtual Reality Games on Pain, Function, Quality of Life, And Engagement in Post-Knee-Surgery Patients)

  • 김홍길;정주현
    • PNF and Movement
    • /
    • 제21권3호
    • /
    • pp.345-356
    • /
    • 2023
  • Purpose: The aim of this study was to investigate the effects of physical therapy combined with a virtual reality (VR) game on pain, quality of life (QOL), engagement, and knee function in post-knee-surgery patients. Methods: Twenty-four patients who had undergone knee surgery four weeks or more before the study were recruited. Two withdrew from the study during the four-week experimental period, and a total of 22 patients were included in the final analysis. Routine physical therapy consisting of electrostimulation (10 min.) and therapeutic massage (10 min.) was the base intervention for all groups. The experimental group (n = 10) was additionally exposed to a VR game intervention, while the control group (n = 12) underwent an intervention involving similar motions as the experimental intervention but with no VR. The intervention for the experimental group used the game Rig Fit Adventure on Nintendo switch. Both groups underwent their respective interventions 3 times a week (35 min. per session) for 4 weeks. Pain was assessed using the numeric rating scale (NRS), and QOL was assessed using the EuroQol five-dimensional five-level questionnaire (EQ-5D-5L). Engagement was assessed using the Korea flow state scale (K-FSS). Finally, knee movement and function were assessed based on knee flexion and extension, range of motion (ROM), and Western Ontario and McMaster Universities Arthritis Index (WOMAC). Results: After the four-week physical therapy, both groups showed significant reductions in pain (on the NRS), increased knee ROM (flexion), better WOMAC scores, and increased EQ-5D-5L scores (p < 0.05), with the experimental group showing significantly better improvements in EQ-5D-5L and K-FSS scores (p < 0.05). Conclusion: The results of this study confirm that a VR-game-integrated intervention is effective for improving pain, QOL, engagement, and knee function in post-knee surgery patients and that VR-game-integrated interventions could be therapeutic alternatives for patients bedridden for prolonged periods with little motivation for rehabilitation.

Virtual lymph node analysis to evaluate axillary lymph node coverage provided by tangential breast irradiation

  • Park, Shin-Hyung;Kim, Jae-Chul;Lee, Jeong Eun;Park, In-Kyu
    • Radiation Oncology Journal
    • /
    • 제33권1호
    • /
    • pp.50-56
    • /
    • 2015
  • Purpose: To investigate the coverage of axillary lymph node with tangential breast irradiation fields by using virtual lymph node (LN) analysis. Materials and Methods: Forty-eight women who were treated with whole breast irradiation after breast-conserving surgery were analyzed. The axillary and breast volumes were delineated according to the Radiation Therapy Oncology Group (RTOG) contouring atlas. To generate virtual LN contours, preoperative fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) scans with identifiable LN were fused with the CT scans, and the virtual LN contour were delineated on the CT. Results: The median level I and II axillary volume coverage percentages at the $V_{D95%}$ line were 33.5% (range, 5.3% to 90.4%) and 0.6% (range, 0.0% to 14.6%), respectively. Thirty-one LNs in 18 patients were delineated (26 in level I and 5 in level II). In the level I axilla, 84.6% of virtual LNs were encompassed by the 95% isodose line. In the level II axilla, by contrast, none of the virtual LNs were encompassed by the 95% isodose volumes. There was a substantial discrepancy between the RTOG contouring atlas-based axillary volume analysis and the virtual LN analysis, especially for the level I axillary coverage. The axillary volume coverage was associated with the body mass index (BMI) and breast volume. Conclusion: The tangential breast irradiation did not deliver adequate therapeutic doses to the axillary region, particularly those in the level II axilla. Patients with small breast volumes or lower BMI showed reduced axillary coverage from the tangential breast fields. For axillary LN irradiation, individualized anatomy-based radiation fields for patients would be necessary.

Point-based surface best fit 알고리즘을 이용한 디지털 치아 모형과 3차원 CT 영상의 중첩 정확도 (IMAGE FUSION ACCURACY FOR THE INTEGRATION OF DIGITAL DENTAL MODEL AND 3D CT IMAGES BY THE POINT-BASED SURFACE BEST FIT ALGORITHM)

  • 김봉철;이채은;박원서;강정완;이충국;이상휘
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권5호
    • /
    • pp.555-561
    • /
    • 2008
  • Purpose: The goal of this study was to develop a technique for creating a computerized composite maxillofacial-dental model, based on point-based surface best fit algorithm and to test its accuracy. The computerized composite maxillofacial-dental model was made by the three dimensional combination of a 3-dimensional (3D) computed tomography (CT) bone model with digital dental model. Materials and Methods: This integration procedure mainly consists of following steps : 1) a reconstruction of a virtual skull and digital dental model from CT and laser scanned dental model ; 2) an incorporation of dental model into virtual maxillofacial-dental model by point-based surface best fit algorithm; 3) an assessment of the accuracy of incorporation. To test this system, CTs and dental models from 3 volunteers with cranio-maxillofacial deformities were obtained. And the registration accuracy was determined by the root mean squared distance between the corresponding reference points in a set of 2 images. Results and Conclusions: Fusion error for the maxillofacial 3D CT model with the digital dental model ranged between 0.1 and 0.3 mm with mean of 0.2 mm. The range of errors were similar to those reported elsewhere with the fiducial markers. So this study confirmed the feasibility and accuracy of combining digital dental model and 3D CT maxillofacial model. And this technique seemed to be easier for us that its clinical applicability can good in the field of digital cranio-maxillofacial surgery.