• Title/Summary/Keyword: virtual sensors

Search Result 256, Processing Time 0.028 seconds

A Mechanism to configure for Connected Car Service Environment using Mobile Virtual Fence (모바일 가상 펜스를 이용한 커넥티드 카 서비스 환경 구성 메커니즘)

  • Eom, Young-Hyun;Choi, Young-Keun;Kim, Inhwan;Yoo, Hyunmi;Cho, Sungkuk;Jeon, Byungkook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.3
    • /
    • pp.227-233
    • /
    • 2018
  • In recent years, connected car, which has sensors and computers attached to vehicles used to detect the surrounding environment, has been actively studied. However, in order to configure the connected car environment, various sensors and roadside equipments are required to detect the surrounding environment of the vehicle, and also communication techniques for transmitting the collected data are in demands. Therefore, in this paper, the mobile virtual fence that collects and communicates the data of the surrounding environment through the sensor mounted on the mobile device is applied to the vehicles that were released before the connected car service environment was constructed, We propose a mechanism to receive the service and show the possibility through experiment.

The Built of Smart Factory Using Sensors and Virtual Process Design (센서와 가상 공정설계를 활용한 스마트 팩토리 구축)

  • So, Byeong-Eob;Shin, Sung-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1071-1080
    • /
    • 2017
  • Recently, the terms of the 4th Industrial Revolution and the Smart Factory are often heard through news and media. But most of the companies that are parties are not interested. Because there is no specific guidance on how to build Smart Factory and information about Smart Factory. The built of the Smart Factory should be carried out in accordance with the size of the company considering the purpose of the introduction. In the existing study, they analyzed successful cases of building Smart Factory in Korea As a result, in the case of large-size firms, it is an effective strategy that expanding from a model factory to whole factory for successful Smart Factory building. In addition, in the case of medium and small-size firms, it is an effective strategy that upgrading from low-level step to high-level step for successful Smart Factory building. In this study, selecting medium and small-size firms, and bottleneck section and processes requiring improvement are identified through 3D virtual process design, and then install sensors. Finally, after analyzing the data collected through the sensor, we will improve the process and build Smart Factory with improved productivity.

Simulation of Radiation Imaging based on the Scanning of Pin-hole Stereo Vision Sensors (핀홀 스테레오 비전 센서의 공간 스캔을 통한 방사선의 영상화 시뮬레이션)

  • Park, Soon-Yong;Baek, Seung-Hae;Choi, Chang-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1671-1680
    • /
    • 2014
  • There are always much concern about the leakage of radiation materials in the event of dismantle or unexpected accident of nuclear power plant. In order to remove the leakage of radiation materials, appropriate dispersion detection techniques for radiation materials are necessary. However, because direct handling of radiation materials is highly restricted and risky, developing radiation-related techniques needs computer simulation in advance to evaluate the feasibility. In this paper, we propose a radiation imaging technique which can acquire 3D dispersion information of radiation materials and tested by simulation. Using two virtual 1D radiation sensors, we obtain stereo radiation images and acquire the 3D depth to virtual radiation materials using stereo disparity. For point and plane type virtual radiation materials, the possibility of the acquisition of stereo radiation image and 3D information are simulated.

Local Minimum Free Motion Planning for Mobile Robots within Dynamic Environmetns

  • Choi, Jong-Suk;Kim, Mun-Sang;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1921-1926
    • /
    • 2003
  • We build a local minimum free motion planning for mobile robots considering dynamic environments by simple sensor fusion assuming that there are unknown obstacles which can be detected only partially at a time by proximity sensors and can be cleaned up or moved slowly (dynamic environments). Potential field is used as a basic platform for the motion planning. To clear local minimum problem, the partial information on the obstacles should be memorized and integrated effectively. Sets of linked line segments (SLLS) are proposed as the integration method. Then robot's target point is replaced by virtual target considering the integrated sensing information. As for the main proximity sensors, we use laser slit emission and simple web camera since the system gives more continuous data information. Also, we use ultrasonic sensors as the auxiliary sensors for simple sensor fusion considering the advantages in that they give exact information about the presence of any obstacle within certain range. By using this sensor fusion, the dynamic environments can be dealt easily. The performance of our algorithm is validated via simulations and experiments.

  • PDF

Client-Centered Mobile Augmented Reality System for Virtual Building Simulation (가상 건축물 시뮬레이션을 위한 클라이언트 중심의 모바일 증강현실 시스템)

  • Kim, Eun-Mi;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.2
    • /
    • pp.228-236
    • /
    • 2008
  • Recently augmented reality technology has been researched to view the virtual shape of buildings before construction or cultural heritages under recovery. Those researches used special devices or markers that are not applicable in long distanced outdoor environment. Also the server had to compute a lot of transformations for the location changes of virtual objects. This paper proposed a mobile augmented reality system that uses GPS and accelerometer sensors in order to compute the virtual object's locations without using markers. The server determines the position and orientation by comparing the GPS data obtained from the client with the predefined 3D object informations in the server. If the server sends the virtual object informations such as the position, orientation and matching information, then the client matches the virtual object on the screen of mobile camera phone. In addition, the client computes the transformations of location change detected by the accelerometer derived from the user's movement without additional connection to the server.

  • PDF

Personal Information Protection Using Digital Twins in the Fourth Industrial Revolution (4차 산업혁명 시대의 디지털트윈을 활용한 개인정보보호)

  • Kim, Yong-Hun
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.279-285
    • /
    • 2020
  • In the era of the Fourth Industrial Revolution, there are many sensors around. People and things are connected to these sensors to the internet. Numerous connected sensors produce the latest data in seconds, and these data are stacked with big data of unimaginable size. Because personal information can be contained in any place of data produced, device and system protection are needed. Digital twins are virtual models that accurately reflect the status information of physical assets and systems that utilize them. The characteristic of digital twin is that digital twin itself has temporal and structural identity enough to represent the object of reality. In the virtual environment the reproduced reality, it continuously simulates and it virtuals of the point of time or the future, the replica can be created. Therefore, this study cited factors threatening personal information in the era of the Fourth Industrial Revolution. And proposed using digital twin technology that can simulate in real-time to overcome the risk of personal information hacking.

A Navigation Algorithm using a Locomotion Interface with Programmable Foot Platforms for Realistic Virtual Walking (실감의 가상 걸음을 위한 발판타입 이동인터페이스의 네비게이션 알고리즘)

  • Yoon, Jung-Won;Ryu, Je-Ha
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.6
    • /
    • pp.358-366
    • /
    • 2006
  • This paper describes a novel navigation algorithm using a locomotion interface with two 6-DOF programmable foot platforms. When a human walks on the locomotion interface (LI), the walking motions of the human are recognized by several sensors. Then, the sensed information is used by the LI for generation of infinite surfaces for continuous walking and the virtual environments for scene update according to motions of the human walking. The suggested novel navigation system can induce user's real walking and generate realistic visual feedback during navigation. A novel navigation algorithm is suggested to allow natural navigation in virtual environments by utilizing conditions of normal gait analysis. For realistic visual feedback, the virtual environment is designed with three components; 3D object modeler for buildings and terrains, scene manager and communication manager component. From experiments, the subjects were satisfied with the reality of the suggested navigation algorithm using the locomotion interface. Therefore, the suggested navigation system can allow a user to explore into various virtual terrains with real walking and realistic visual feedback.

The Interactive Virtual Space with Scent Display for Song-Do Tomorrow-City Experience Complex (향 디스플레이가 가능한 송도 Tomorrow-city 체험관의 상호작용 가상공간)

  • Kim, Jeong-Do;Park, Sung-Dae;Lee, Jung-Hwan;Kim, Jung-Ju;Lee, Sang-Goog
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.585-593
    • /
    • 2010
  • Recently, we designed an interactive virtual space for the multi-purpose hall in Songdo Future City, located in Incheon, Korea. The goal of the design is to make a virtual space that is flexible and can be adjusted thanks to its unfixed seats in order to accommodate different and unspecified audience sizes. Virtual images are interactively adjusted according to the distance, position and size of audiences, information about which is detected by 9 photo sensors. To increase the sense of immersion, intensity and reality, we utilized the technology of scent display that can create appropriate scents to match the images on the screen. The intensity and persistence of scents were determined by the size, distance and position of audiences. The virtual image contains background images and reactive images. The background images repeatedly project images of spring, summer, autumn and winter. The reactive images consist of small portraits or pictures or icons that define or characterize the season types, and these are added to the background image according to the distance, position and size of the audiences.

Indoor Autonomous Driving through Parallel Reinforcement Learning of Virtual and Real Environments (가상 환경과 실제 환경의 병행 강화학습을 통한 실내 자율주행)

  • Jeong, Yuseok;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.4
    • /
    • pp.11-18
    • /
    • 2021
  • We propose a method that combines learning in a virtual environment and a real environment for indoor autonomous driving through reinforcement learning. In case of learning only in the real environment, it takes about 80 hours, but in case of learning in both the real and virtual environments, it takes 40 hours. There is an advantage in that it is possible to obtain optimized parameters through various experiments through fast learning while learning in a virtual environment and a real environment in parallel. After configuring a virtual environment using indoor hallway images, prior learning was carried out on the desktop, and learning in the real environment was conducted by connecting various sensors based on Jetson Xavier. In addition, in order to solve the accuracy problem according to the repeated texture of the indoor corridor environment, it was possible to determine the corridor wall object and increase the accuracy by learning the feature point detection that emphasizes the lower line of the corridor wall. As the learning progresses, the experimental vehicle drives based on the center of the corridor in an indoor corridor environment and moves through an average of 70 steering commands.

Virtual Visual Sensors and Their Application in Structural Health Monitoring (가상 시각 센서의 구조물 건전성 모니터링 응용)

  • Kim, Hee Seung;Choi, Kyoung Kyu;Kim, Tae Jin
    • Magazine of the Korea Institute for Structural Maintenance and Inspection
    • /
    • v.18 no.4
    • /
    • pp.83-88
    • /
    • 2014
  • 구조물에 최적화된 센서 배열(Sensor Array)을 수행하는 것은 센서 네트워크 설계에서 중요한 요소이다. 그러나 센서의 설치와 관리는 구조물이 처해 있는 환경이나, 경제성 그리고 센서의 주파수대역의 제한과 같은 다양한 원인으로 인해 매우 어려울 수 있다. 이 논문에서는 일반적인 문제와 환경에서 현재 사용되고 있는 물리적 센서 대용으로 가상 시각 센서(VVS: Virtual Visual Sensor)를 제안하였다. 가상 시각 센서는 설치가 간편하고 경제적이며 관리가 편하다는 큰 장점을 가지고 있다. 이러한 가상 시각 센서의 기본적인 아이디어는 최첨단 컴퓨터 시각 알고리즘과 마커 추출 기법의 적용으로 이루어진다. 이 연구에서는 가상 시각 센서를 이용하여 모드 형태와 주파수를 추출하는데 용이하다는 점을 보여주며 이를 구조물 건전성 모니터링에 적용할 경우 효율적이라는 점을 입증하였다.

  • PDF