# 해외번역기사



이번 해외번역기사에서 소개하는 논문은 Structural Health Monitoring 2014년 5월호에 게재된 것으로 영국 맨체스터에 위치한 바스대학교(University of Bath)의 Yi-Zhe Song, Chris Bowen, H. Alicia Kim, Aydin Nassehi, Julian Padget, Nick Gathercole에 의해 작성되 었다. 최근 구조물에 센서를 설치하여 실시간으로 계측하 는 구조물 건전성 모니터링 시스템이 증가되고 있다. 하지 만 기존의 모니터링 시스템의 경우 계측 센서의 관리나 계 측된 데이터의 효율적인 접근이 어려워 이를 극복하기 위 한 방법으로 QR코드, RFID, 증강현실 등 다양한 기술이 개발 되고 있다. 이 논문은 구조물 건전성 모니터링 시스 템에 시각 센서를 이용한 증강현실 기술을 적용하는 자료 로 본 기사에서는 논문 전문 중 가상 시각 센서를 이용하 여 구조물의 동적 특성치를 추출하는 부분을 중심으로 내 용을 구성하였다.

# 요약문

구조물에 최적화된 센서 배열(Sensor Array)을 수행하는 것은 센서 네트워크 설계에서 중요한 요소이다. 그러나 센서의 설치와 관리는 구조물이 처해 있는 환경이나, 경제 성 그리고 센서의 주파수대역의 제한과 같은 다양한 원인 으로 인해 매우 어려울 수 있다. 이 논문에서는 일반적인 문제와 환경에서 현재 사용되고 있는 물리적 센서 대용으 로 가상 시각 센서(VVS: Virtual Visual Sensor)를 제안 하였다.

가상 시각 센서는 설치가 간편하고 경제적이며 관리가 편하다는 큰 장점을 가지고 있다. 이러한 가상 시각 센서 의 기본적인 아이디어는 최첨단 컴퓨터 시각 알고리즘과 마커 추출 기법의 적용으로 이루어진다. 이 연구에서는 가 상 시각 센서를 이용하여 모드 형태와 주파수를 추출하는 데 용이하다는 점을 보여주며 이를 구조물 건전성 모니터 링에 적용할 경우 효율적이라는 점을 입증하였다.

# 1. 서 론

지난 수년간 센서 네트워크와 적용 가능한 응용프로그램 은 많은 관심과 연구의 대상이었다. 이러한 기술들의 활용 은 군사 산업 및 민간에서 다양한 형태로 이루어지며, 센 서를 이용하여 주변 환경 및 물리적 변화를 모니터링 하고 취득한 데이터에 기초하여 다양한 결정을 내리게 된다.

원래 센서 네트워크는 서로 물리적으로 연결되어 있는 비교적 큰 센싱노드를 사용하며 신호의 계측을 담당하는 관측기와 연결되어 있다. 현대에 이르러서는 미세 전자 기 계 시스템(MEMS)의 진보로 인해 무선 통신 센서 및 소형

<sup>1)</sup> 숭실대학교 건축학부 석사과정

<sup>2)</sup> 숭실대학교 건축학부 조교수, 공학박사

<sup>3)</sup> 창민우구조컨설턴트 본부장, 공학박사

<sup>\*</sup> E-mail : kkchoi@ssu.ac.kr

화된 센서의 대량 생산을 촉진하게 되었다. 이에 따라 기 존의 센서 네트워크에서 발생했던 유연성 및 확장성의 문 제는 대부분 해결되어 이를 바탕으로 한 무선 센서 네트워 크의 실용화가 급증하였으며, 실시간으로 구조물의 상태를 파악하는 구조물 건전성 모니터링 시스템이 이용되게 되었다.

그러나 센서 네트워크 및 응용분야의 발전에도 불구하고 센서를 사용함에 있어서 센서 설치 및 관리가 어렵고 막대 한 비용이 소모되게 된다. 특히 최근에는 구조물이 대형화 됨에 따라 네트워크 또한 그에 맞게 커지며 설치 및 관리 가 더욱 복잡해지고 있다.

이 논문에서는 센서의 다른 형태인 가상 시각 센서(VVS) 의 개념을 소개하고 부화소 정밀도(Sub-pixel accuracy) 를 이용한 호프 변환(HT: Hough Transform)기법을 살 펴본 후, 센서에서 취득된 비디오 프레임에서 시간영역에 서의 변위, 속도, 가속도의 산정과정을 제시하였다. 마지막 으로 VVS을 이용하여 탄소섬유로 보강된 플라스틱 빔에 대하여 동적 실험을 수행하고 주요 모드별 모드 형상, 모 드 진동수를 산정하였다.

## 2. 가상 시각 센서

일반적인 센서와 달리, 가상 시각 센서는 무선 비디오 센 서 네트워크(WVSN: Wireless Video Sensor Networks) 을 통해 편리하게 저장할 수 있는 이미지/비디오에서 추출 된 형태로 구현되며, 단순히 위치시키거나 페인팅(마커)을 함으로서 가상 시각 센서의 설치가 수행된다. 이러한 과정 으로 인해 일반적인 센서와 비교했을 때 센서의 설치 및 네트워크의 효율적 관리가 가능하다.

#### 2.1 시스템 개요

VVS 네트워크의 프로세스는 두 단계로 이뤄진다. 첫 번 째로는 입력영상의 모든 프레임에서 마커를 추출하여 공간 위치를 추정하는 단계이며 두 번째는 시간 영역에서 이전 에 추출한 마커를 연결하는 단계이다. 두 공간 및 시간 정 보를 임시 저장된 motion으로부터 취득하면, 각 마커의 동 적 특성을 얻을 수 있다. 이 논문에서는 부화소 정밀도를 이용한 호프 변환기법을 이용하였는데 이 기법을 이용했을 때, 정확성과 효율성 측면에서 우수하며 이는 고주파수 영 역의 진동수를 효과적으로 산정할 수 있기 때문에 구조물 의 작은 변화에 대처할 수 있다고 설명하고 있다. VVS 네트워크의 첫 번째 단계인 마커를 추출하는 단계 에서는 정확성과 효율성이라는 두 가지의 주요 설계 고려 사항이 있다. 이러한 설계 주안점은 호프변환기법을 변형 적용하여 고려할 수 있다. 호프변환 기법은 일반적으로 선, 원, 사각형과 같은 순수 기하학적 형태를 갖는 이미지를 추출한다. 여기서 기존의 호프변환 기법을 그대로 마커 추 출에 적용할 경우 매우 큰 시각적 노이즈가 발생하며 추출결 과가 불연속적이게 되므로 일반적으로 후처리 과정이 필요 하게 된다. 따라서 원형 형태의 마커를 추출하기 위해서는 호프 변환의 개선된 형태인 원형 호프 변환(CHT: Circular Hough Transform)을 사용하게 된다. CHT는 임의의 점 의 위치를 이용하여 원형 형태의 반지름 R을 결정하게 되 며 결정된 R값을 바탕으로 마커를 추출하게 된다. Fig. 1(a)는 보 구조물에서 CHT를 이용하여 마커를 추출한 결 과를 보여주고 있다.

한편, CHT 방법을 이용할 경우 Fig. 1(a)과 같이 각각 의 원형 마커의 중심이 조금씩 어긋나는 것을 알 수 있는 데 이는 디지털화 된 이미지의 해상도 한계로 인한 것이다. 따라서 구조물의 고주파수 영역의 진동에 대처하기 위해서 이미지의 정확도 보정이 필수적이며, 이 연구에서는 부화 소 정밀도(Sub-pixel accuracy)를 이용하여 최종적으로 원형 마커를 추출 하였으며 그 결과를 Fig. 1(b), (c)에 제 시하였다.

#### 2.3 추출된 마커의 연결

각 프레임마다 마커의 추출이 이뤄지면, 시간영역에서 마커들을 연결하게 되며 이를 바탕으로 구조물의 동적특성 을 얻을 수 있다. 이와 같이 각 이미지의 마커들을 찾아 연 결하는 과정을 트래킹(Tracking)이라고 하며 Fig. 2는 트 래킹 알고리즘을 이용하여 캔틸레버 보의 변형형상을 찾는 예를 나타낸 것이다. 이러한 트래킹 알고리즘은 구조물의 변형형상을 결정하는데 있어 매우 중요한 역할을 하게 되 며 구조물의 주변 환경과 영상처리의 효율성을 고려하여 결정해야 한다.

## 3. 실험결과

구조물 건전성 모니터링 시스템에 VVS의 적용성을 검





(b) sub-pixel accuracy



(c) overall result Fig. 1 Marker Extraction Result





증하기 위하여 동적 실험을 수행하였다. 이 실험의 주안점 은 VVS를 이용하여 구조물의 중요한 동적특성인 모드형 상 및 모드 진동수 산정이다. 따라서 일반적인 기법으로 수행된 모드특성과 비교를 통해 VVS의 적용성을 검토하 고자 하였다.

#### 3.1 실험체 설치

실험에 사용된 구조체는 캔틸레버 보로 실험체 좌측 단 부를 고정하였으며, 우측에는 진동 컨트롤러를 설치하였 다. 고속촬영 카메라를 이용하여 보의 거동을 촬영하였으 며, 실험체 셋업은 Fig. 1(c)와 같다. 보는 탄소섬유로 보 강된 플라스틱 재료를 사용하였고 48개의 백색 원형 마커 를 위치시켰으며 1~3모드에 해당하는 진동수의 해당하는 이미지의 3초 motion clip을 저장하여 총 14개의 motion clip을 얻었다.

#### 3.2 모드형상의 결정

모드형상은 동적실험결과로 얻어지는 구조물의 고유한 특성으로 손상 탐지 알고리즘에 다양하게 이용되고 있다. 그러나 실제 구조물에서는 모드형상을 알기 위해서는 매우 많은 양의 센서가 설치되어야 하므로 센서 네트워크가 복 잡해지고, 계측된 결과를 통해 결정된 모드형상이 실제 구



(a) modal shape of 1<sup>st</sup> mode



(b) a zoomed-in section of the modal shape in (a)Fig. 3 Modal Shape Reconstruction Result

조물과 다를 수 있는 잠재적인 문제점을 가지고 있다. 다량의 센서를 설치하는 대신에 도플러 진동 측정기(LDV: Laser Doppler Vibrometers)를 사용하여 모드형상을 측정하는 방법도 있지만 매우 고가이며 해상도 제한으로 인해 사용 에 제한이 있다.

LDV와 유사한 방식으로, 영상촬영은 모드형상을 직접 확인할 수 있으며, VVS를 통해 구조물의 모드 형상을 정 확하게 재구성 할 수 있다. VVS에서는 프레임에서 추출된 마커를 이용하여 모드형상을 fitting을 통해 구현하게 되는 데 Fig. 3(a)는 실험체의 모드형상을 재구성한 결과를 이 며 동일 모드의 형상을 확대한 것이 Fig. 3(b)이다. 그림 에서 볼 수 있듯이 매끄러운 곡선 형태를 취하고 있다.

이론적인 모드형상은 알려진 바와 같이 완벽하게 매끄러 운 곡선의 형태를 취한다. 기존의 호프 기법만을 이용하여 마커를 추출 할 경우 Fig. 4의 녹색 곡선의 형태와 같이 국 부적으로 불연속적인 형상을 나타내게 된다. 이러한 모드 형상을 손상 탐지 알고리즘에 적용할 경우 손상영역을 잘 못 판단하는 경우가 발생하게 된다. Fig. 4의 노란색의 곡 선은 부화소 정밀도를 이용하여 fitting을 수행한 것으로 기존 기법의 fitting 결과와 비교했을 때, 상대적으로 곡선 이 매끄러운 형태를 보이는 것을 확인 할 수 있다. 논문에



Fig. 4 Modal Shapes: sub-pixel VVS(yellow) vs. standard HT(green)

서는 곡선의 매끄러움의 정도를 수치로 비교하기 위해 실 험으로 얻어진 14개의 motion clip에 대하여 전체 곡률 평 균(Overall mean curvature)을 계산하였고 비교 결과 평 균 44.45%의 향상된 모드 형상 얻는 것으로 나타났다 (Table 1).

#### 3.3 모드 진동수의 결정

동적실험의 모드해석에서 모드 진동수는 일반적으로 주 파수응답함수(FRF: Frequency Response Function)를 이용하여 산정되며 FRF는 구조물의 설치된 센서에서 취득 된 신호의 푸리에 변환을 적용하여 얻을 수 있다. 그러나 구조물에서 설치할 수 있는 물리적 센서는 공간의 제약 및 구조적 손상으로 인해 그 수량과 위치가 제한된다. 따라서

Table 1 Overall Mean Curvatures of All 14 motion Clips

| Clip<br>ID | Overall mean curvature<br>of HT with sub-pixel<br>accuracy | Overall mean<br>curvature of<br>standard HT | Improvement<br>standard HT(%) |
|------------|------------------------------------------------------------|---------------------------------------------|-------------------------------|
| 1          | 35.6662                                                    | 68.8039                                     | 48.16                         |
| 2          | 29.4660                                                    | 69.4223                                     | 57.56                         |
| 3          | 39.0362                                                    | 35.3930                                     | 40.31                         |
| 4          | 36.3630                                                    | 67.0090                                     | 45.73                         |
| 5          | 37.3109                                                    | 65.7133                                     | 43.22                         |
| 6          | 38.0005                                                    | 57.4644                                     | 33.87                         |
| 7          | 36.4490                                                    | 71.2310                                     | 48.83                         |
| 8          | 24.4967                                                    | 68.6575                                     | 64.32                         |
| 9          | 43.9936                                                    | 64.2660                                     | 31.54                         |
| 10         | 40.5168                                                    | 63.2633                                     | 35.96                         |
| 11         | 24.2285                                                    | 68.8276                                     | 64.80                         |
| 12         | 42.5493                                                    | 62.5073                                     | 31.93                         |
| 13         | 49.6801                                                    | 58.7272                                     | 15.41                         |
| 14         | 31.0335                                                    | 64.5894                                     | 51.95                         |
| Average    | 36.3422                                                    | 65.4197                                     | 44.45                         |

마커와 같은 표식을 이용한 VVS는 이러한 제한사항을 극 복할 수 있다.

이 논문에서는 기존의 화소(pixel)와 부화소 정밀도 (sub-pixel accuracy)를 각각 이용하여 계측신호를 구성 하였으며, 이를 위해 동적 실험에서 저장된 motion clip을 이용하였다. Motion clip의 저장된 프레임들을 트래킹하기 위하여 CPD 알고리즘을 사용하여 각각의 계측신호를 구 성하였다. Fig. 5(a)는 각각의 계측치를 시간영역에서 보 여주는 그래프인데 녹색이 화소, 적색이 부화소 정밀도를 이용해서 구성한 계측신호를 나타내고 있다. 이러한 계측 신호에 FRF를 이용하여 주파수 영역으로 신호를 분석한 그래프를 Fig. 5(b), (c)에 각각 나타내었다. 그림에서 확 인할 수 있듯이 부화소 정밀도를 이용한 신호는 3가지 모 드 진동수를 매우 정확하게 보여주는 반면 일반 화소를 이 용한 신호는 1차 모드의 진동수만을 정확하게 확인 할 수 있다. VVS에서 추출된 화소 및 부화소 정밀도를 이용한 구조물의 모드 진동수와 실제 동적실험에 센서를 설치하여



Fig. 5 Modal Frequency Identification Results

# 해외번역기사

Table 2 Modal Frequency Comparisons

| Mode ID | Frequency<br>with pixel(Hz) | Frequency with<br>sub-pixel<br>accuracy(Hz) | Actual<br>frequency (Hz) |
|---------|-----------------------------|---------------------------------------------|--------------------------|
| 1       | 35.6662                     | 68.8039                                     | 48.16                    |
| 3       | 36.3422                     | 65.4197                                     | 44.45                    |

얻은 모드 진동수를 비교한 결과를 Table 2에 제시하였다. 일반 화소를 이용한 신호의 경우 FRF 결과 중 Mode 2에 해당하는 신호가 정확하지 않아 비교적 정확한 모드로 판 단되어지는 Mode 1과 Mode 2의 진동수를 비교하였다. 표에서 알 수 있듯이 부화소 정밀도를 이용한 모드 진동수 가 센서를 통해 계측된 진동수와 매우 유사한 것을 확인 할 수 있으며, 부화소 정밀도를 이용한 VVS 시스템이 구 조물의 동적 특성치를 추출하는데 유용하고 정확하다는 점 을 보여주고 있다.

## 4. 토 의

구조 전전성 모니터링(Structural Health Monitoring: SHM)시스템에서 실시간 신호를 계측하는 센서 네트워크 는 매우 중요한 부분을 차지한다. 최근 구조물이 대형화 되면서 시공 및 유지관리 과정에서 구조물을 이루는 부재 의 강도, 온・습도, 바람, 진동 등 다양한 물성치에 대해 관리가 필요하며 각 물성치를 계측・감시하기 위해 센서 네트워크 또한 필연적으로 커지게 되어 센서의 설치 및 관 리가 어려워진다. 이 논문에서 소개한 가상 시각 센서 (Virtual Visual Sensor)는 구조물의 주변 환경 및 물리 적 현상에 대해서 영상촬영을 통해 그 신호를 구성하기 때 문에 기존의 물리적 센서에 비해 설치나 관리가 편리하다 는 장점을 가지고 있다. 특히 최근 IT기술의 비약적인 발 전으로 다양한 모바일 디바이스가 보급되고 영상처리기법 의 발전으로 인해 무선 비디오 센서 네트워크에 대한 관심

# 이 증대되고 있어 향후 구조 건전성 모니터링 시스템에 적 용이 확대될 것으로 예상된다.

#### 참고문헌

- Song, Yi-Zhe, et al., "Virtual visual sensors and their application in structural health monitoring", Structural Health Monitoring, 2014
- Akyildiz, Ian F., et al., "Wireless sensor networks: a survey", Computer networks 38.4, 2002, pp.393-422.
- Duda, Richard O., and Peter E. Hart., "Use of the Hough transformation to detect lines and curves in pictures", Communications of the ACM 15.1, 1972, pp.11-15.
- Fernandes, Leandro AF, and Manuel M. Oliveira., "Real-time line detection through an improved Hough transform voting scheme", Pattern Recognition 41.1, 2008, pp.299-314.
- Cameron, Alec, and Hugh Durrant-Whyte, "A Bayesian approach to optimal sensor placement", The International Journal of Robotics Research 9.5, 1990, pp.70-88.
- Ingelrest, François, et al., "SensorScope: Application-specific sensor network for environmental monitoring", ACM Transactions on Sensor Networks (TOSN) 6.2, 2010, p.17.
- Kho, Johnsen, et al., "An agent-based distributed coordination mechanism for wireless visual sensor nodes using dynamic programming", The Computer Journal 53.8, 2010, pp.1277-1290.
- Weng, Juyang, Paul Cohen, and Marc Herniou, "Camera calibration with distortion models and accuracy evaluation", IEEE Transactions on pattern analysis and machine intelligence 14.10, 1992, pp.965-980.
- Radzieński, Maciej, and Marek Krawczuk, "Experimental verification and comparison of mode shape-based damage detection methods", Journal of Physics: Conference Series. vol. 181, No. 1. IOP Publishing, 2009.

담당 편집위원: 김도환 (RIST 강구조연구소 책임연구원) dohwan.kim@rist.re.kr