• Title/Summary/Keyword: virtual robot

Search Result 363, Processing Time 0.032 seconds

Development of a Robot Element Design Program (로봇 요소품 설계 프로그램 개발)

  • Jung Il Ho;Kim Chang Su;Seo Jong Hwi;Park Tae Won;Kim Hee Jin;Choi Jae Rak;Byun Kyng Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.113-120
    • /
    • 2005
  • This paper presents the development of the design of the robot element. Robot element design is an important part of robot design since it decides the performance and life time of the robot. It is necessary that the robot kinematics and the robot dynamics are accomplished to design the robot elements. The robot kinematics and dynamics determine the design parameters of the element. We developed a robot element design program with which a designer can design the robot element with convenience and reliability. The program is composed of motor, harmonic driver and ball-screw design. The program is founded on the virtual robot design program. The virtual robot design program is the powerful software which may be used to solve various problems of the robot kinematics and dynamics. The robot element design program may be used to calculate the design parameters of the element that are necessary to design robot element. Therefore, the designer can decide upon the available robot elements available to perform the objective of the robot. The robot element design program is expected to increase the competitiveness and efficiency of the robot industry.

Cluster Robots Line formatted Navigation Based on Virtual Hill and Virtual Sink (Virtual Hill 및 Sink 개념 기반의 군집 로봇의 직선 대형 주행 기법)

  • Kang, Yo-Hwan;Lee, Min-Cheol;Kim, Chi-Yen;Yoon, Sung-Min;Noh, Chi-Bum
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.237-246
    • /
    • 2011
  • Robots have been used in many fields due to its performance improvement and variety of its functionality, to the extent which robots can replace human tasks. Individual feature and better performance of robots are expected and required to be created. As their performances and functions have increased, systems have gotten more complicated. Multi mobile robots can perform complex tasks with simple robot system and algorithm. But multi mobile robots face much more complex driving problem than singular driving. To solve the problem, in this study, driving algorithm based on the energy method is applied to the individual robot in a group. This makes a cluster be in a formation automatically and suggests a cluster the automatic driving method so that they stably arrive at the target. The energy method mentioned above is applying attractive force and repulsive force to a special target, other robots or obstacles. This creates the potential energy, and the robot is controlled to drive in the direction of decreasing energy, which basically satisfies lyapunov function. Through this method, a cluster robot is able to create a formation and stably arrives at its target.

A Path Generation Method for a Autonomous Mobile Robot based on a Virtual Elastic Force (가상 탄성력을 이용한 자율이동로봇 경로생성 방법)

  • Kwon, Young-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.149-157
    • /
    • 2013
  • This paper describes a global path planning method and path optimization algorithm for autonomous mobile robot based on the virtual elastic force in a grid map environment. A goal of a path planning is information for a robot to go its goal point from start point by a effective way. The AStar algorithm is a well-known method for a grid based path planning. This paper suggest a path optimization method by a virtual elastic force and compare the algorithm with a orignal AStar method. The virtual elastic force makes a shorter and smoother path. It is a profitable algorithm to optimize a path in a grid environment.

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

  • Cho, Kyung-Dal
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.327-336
    • /
    • 2004
  • In distributed autonomous mobile robot system, each robot (predator or prey) must behave by itself according to its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot have both learning and evolution ability to adapt to dynamic environment. This paper proposes a pursuing system utilizing the artificial life concept where virtual robots emulate social behaviors of animals and insects and realize their group behaviors. Each robot contains sensors to perceive other robots in several directions and decides its behavior based on the information obtained by the sensors. In this paper, a neural network is used for behavior decision controller. The input of the neural network is decided by the existence of other robots and the distance to the other robots. The output determines the directions in which the robot moves. The connection weight values of this neural network are encoded as genes, and the fitness individuals are determined using a genetic algorithm. Here, the fitness values imply how much group behaviors fit adequately to the goal and can express group behaviors. The validity of the system is verified through simulation. Besides, in this paper, we could have observed the robots' emergent behaviors during simulation.

A study on Batch-processing in Performing Design-changes of Robot-links using Parametric Method (파라메트릭 기법을 사용한 로봇링크 설계변경의 일괄처리 적용연구)

  • Park Tae Won;Moon Ha Kyung;Jung Il Ho;Seo Jong Hwi;Kim Hyuk;Choi Yong Won;Choi Jae Rak
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.1
    • /
    • pp.43-53
    • /
    • 2005
  • We developed the module of the software that robot designers can perform their work faster and more easily. The parametric modeler is founded on the virtual robot design program. The virtual robot design program is the powerful software which may be used to solve various problems of robot kinematics and dynamics. The parametric modeler in the software we developed is that all the positions of joints and links are changed automatically when the designer changes one joint or one link in the robot system. Without parametric method, robot-designers must change all the positions of connected joints and links. It might become time-consuming. However, it is very efficient for designers to use the method of batch-processing in performing design-changes of robot-links using the parametric modeler.

  • PDF

Obstacle avoidance of Mobile Robot with Virtual Impedance (가상임피던스를 이용한 원격 이동로봇의 장애물회피)

  • Jin, Tae-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.451-456
    • /
    • 2009
  • In this paper, a virtual force is generated and fed back to the operator to make the teleoperation more reliable, which reflects the relationship between a slave robot and an uncertain remote environment as a form of an impedance. In general, for the teleoperation, the teleoperated mobile robot takes pictures of the remote environment and sends the visual information back to the operator over the Internet. Because of the limitations of communication bandwidth and narrow view-angles of camera, it is not possible to watch certain regions, for examples, the shadow and curved areas. To overcome this problem, a virtual force is generated according to both the distance between the obstacle and the robot and the approaching velocity of the obstacle w.r.t the collision vector based on the ultrasonic sensor data. This virtual force is transferred back to the master (two degrees of freedom joystick) over the Internet to enable a human operator to estimate the position of obstacle at the remote site. By holding this master, in spite of limited visual information, the operator can feel the spatial sense against the remote environment. It is demonstrated by experiments that this collision vector based haptic reflection improves the performance of teleoperated mobile robot significantly.

A Ftudy of Force Generation Algorithm Based on Virtual Environments (가상환경에서의 힘생성기법 연구)

  • 김창희;황석용;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1714-1717
    • /
    • 1997
  • A human operator is able to perform some tasks smoothly with force feedvack for the teleoperation or a virtual device in a the virtual environments. This paper describes a virtual force generation method with which operator can feel the interactive force between virtula robot and artificial environments. A virtual force generation algortihm is applied to generate the contact force at the arbitrary point of virtual robot, and the virtual force is displayed to the human operator via a tendon master arm consisted with 3 motors. Some experiments has beencarried out to verify the effectiveness of the force generation algorithm and usefulness of the developed backdrivable master arm.

  • PDF

A Simultaneous Object Tracking and Obstacles Avoidance Controller with Fuzzy Danger Factor of Mobile Robot (퍼지 위험지수에 의한 이동로봇의 물체 추적 및 장애물 회피 주행 제어기)

  • Kang, Jae-Gu;Lee, Joong-Jae;Jie, Min-Seok;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.212-220
    • /
    • 2007
  • This paper proposes a method of avoiding obstacles and tracking a moving object continuously and simultaneously by using new concepts of virtual tow point and fuzzy danger factor for differential wheeled mobile robots. Since differential wheeled mobile robot has smaller degree of freedom to control and are non-holonomic systems, there exist multiple solutions (trajectories) to control and reach a target position. The paper proposes 'fuzzy danger factor' for obstacles avoidance, 'virtual tow point' to solve non-holonomic object tracking control problem for unique solution and three kinds of fuzzy logic controller. The fuzzy logic controller is policy decision controller with fuzzy danger factor to decide which controller's result is more valuable when the mobile robot is tracking a moving object with obstacles to be avoided.

  • PDF

Localization and Autonomous Navigation Using GPU-based SIFT and Virtual Force for Mobile Robots (GPU 기반 SIFT 방법과 가상의 힘을 이용한 이동 로봇의 위치 인식 및 자율 주행 제어)

  • Tak, Myung Hwan;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1738-1745
    • /
    • 2016
  • In this paper, we present localization and autonomous navigation method using GPU(Graphics Processing Unit)-based SIFT(Scale-Invariant Feature Transform) algorithm and virtual force method for mobile robots. To do this, at first, we propose the localization method to recognize the landmark using the GPU-based SIFT algorithm and to update the position using extended Kalman filter. And then, we propose the A-star algorithm for path planning and the virtual force method for autonomous navigation of the mobile robot. Finally, we demonstrate the effectiveness and applicability of the proposed method through some experiments using the mobile robot with OPRoS(Open Platform for Robotic Services).

COSMO - low cost force/moment sensor for robot teaching (COSMO - 로봇교시를 위한 저가형 6축 힘/모멘트 센서)

  • ;Choi, Myoung Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1621-1623
    • /
    • 1997
  • Use of teaching pendant is the most widespread and economical way to teach desired motion to robots. It is also very primitive,time consuming and ineffective way of teaching which has not changed since the early days of robot. In order to reduce the teaching effor, a new efficient form of teaching is needed. Also, the recent robotics research trend into service robots such as home robot, nurse robot and medical robot calls for a new teaching method which is both easy and inexpensive. In this paper, the design and operation principle of a low cost force/moment sensor is presented. The proposed sensor architecture is so simple and inexpensive that it opens the prospect for a new paradigm of robot teaching which is easy and efficinet. Other prospective areas of application are tele-manipulation of robots wher it can be used in master arm, and virtual environment where it can be used as an user input device.

  • PDF