DOI QR코드

DOI QR Code

가상임피던스를 이용한 원격 이동로봇의 장애물회피

Obstacle avoidance of Mobile Robot with Virtual Impedance

  • 진태석 (동서대학교 메카트로닉스공학과)
  • 투고 : 2009.04.03
  • 심사 : 2009.06.20
  • 발행 : 2009.08.25

초록

본 논문에서는 Virtual Mass-Spring-Damper 모델을 사용하여 이동로봇과 주위 물체와의 관계를 모델링하고 장애물의 충돌벡터를 검출하여 가상의 척력을 발생시키는 가상 임피던스 방법을 제안하였다. 이를 위하여 원격지 슬래이브 로봇의 주위 환경 정보 즉, 이동 로봇과 장애물과의 거리 및 접근 속도 등의 정보를 조작자에게 입체적으로 전달하기 위해 조이스틱의 각축에 연결된 모터를 이용하여 힘을 발생시킬 수 있도록 한다. 제안한 방법의 실제 로봇적용에 앞서 이동로봇의 장애물 회피 시뮬레이션을 통하여 알고리즘을 검증하였다.

In this paper, a virtual force is generated and fed back to the operator to make the teleoperation more reliable, which reflects the relationship between a slave robot and an uncertain remote environment as a form of an impedance. In general, for the teleoperation, the teleoperated mobile robot takes pictures of the remote environment and sends the visual information back to the operator over the Internet. Because of the limitations of communication bandwidth and narrow view-angles of camera, it is not possible to watch certain regions, for examples, the shadow and curved areas. To overcome this problem, a virtual force is generated according to both the distance between the obstacle and the robot and the approaching velocity of the obstacle w.r.t the collision vector based on the ultrasonic sensor data. This virtual force is transferred back to the master (two degrees of freedom joystick) over the Internet to enable a human operator to estimate the position of obstacle at the remote site. By holding this master, in spite of limited visual information, the operator can feel the spatial sense against the remote environment. It is demonstrated by experiments that this collision vector based haptic reflection improves the performance of teleoperated mobile robot significantly.

키워드

참고문헌

  1. Hassan-Zadeh, Janabi-Sharifi. Yang A.X., 'Internet-based teleoperation of a mobile robot using shared impedance control scheme: a pilot study' Proc. of the IEEE Conference on Control Applications, pp.346-351, 2005
  2. Takemori, F., Tomita, N., Kushida, D., Kitamura, A., 'Mobility of legged robot by non-contact impedance control' Advanced Intelligent Mechatronics, IEEE/ASME International Conference on, pp.395-399, July 2008
  3. D. A. Lawrence, 'Stability and Transparency in Bilateral Teleoperation,' IEEE Trans. on Robotics and Automation, vol. 9, no. 5, pp. 624-637, 1993 https://doi.org/10.1109/70.258054
  4. S. H. Lee and H. S. Lee, 'Modeling, Design, and Evaluation of Advanced Teleoperator Control System with Short Time Delay,' IEEE Trans. on Robotics and Automation, vol. 9, no. 5, pp. 607-623, 1993 https://doi.org/10.1109/70.258053
  5. S. S. Lee and J. M. Lee, ‘Haptic interface design for the tele-surgery,’ Proc. of the CIDAM Workshop on Service Automation and Robotics, Hong Kong, pp. 81-91, June 19-20, 2000
  6. J. Borenstein and Y. Koren, 'Teleautonomous Guidance for Mobile Robots,' IEEE Trans. on System, Man and Cybernetics, vol.20, no.6, pp. 1437 –1443, 1990 https://doi.org/10.1109/21.61212
  7. S. G. Hong, J. J. Lee, and S. H. Kim, 'Generating Artificial Force for Feedback Control of Teleoperated Mobile Robots,' Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol.3, pp. 1721-1726, 1999
  8. I. Elhajj, N. Xi, W. K. Fung, Y. H. Liu, W. J. Li, T. Kaga, and T. Fukuda, 'Haptic Information in Internet-Based Teleoperation,' IEEE/ASME Trans. on Mechatronics, vol. 6, no. 3, 2001
  9. S. Lee, G. S. Sukhatme, G. J. Kim, and C. Park, 'Haptic Control of a Mobile Robot: A User Study,' Proc. of IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 2867-2874, 2002
  10. Baoguo Li, and Chunxi Zhang, 'Adaptive fuzzy control for mobile robot obstacle avoidance based on virtual line path tracking' Proc. Of the 2006 IEEE, International conference on Robotics and Biomimetics, pp.1454-1458, 2006
  11. J. Borenstein and Y. Koren, 'Histogramic in-motion mapping for mobile robot obstacle avoidance,' IEEE Trans. on Robotics and Automation, vol. 7, pp. 535-539, 1991 https://doi.org/10.1109/70.86083
  12. T. Arai, H. Ogata, and T. Suzuki, 'Collision Avoidance among Multiple Robots Using Virtual Impedance,' Proc. of IEEE/RSJ Int. Workshop on Intelligent Robots and Systems, pp. 479-485, 1989
  13. Kitagawa, L.; Kobayashi, T.; Beppu, T.; Terashima, K., 'Semi-autonomous obstacle avoidance of omnidirectional wheelchair by joystick impedance control' Intelligent Robots and Systems, 2001. Proc. of IEEE/RSJ International Conference on, vol.4,pp. 2148–2153, Nov. 2001

피인용 문헌

  1. Haptic Joystick Implementation using Vibration Pattern Algorithm vol.19, pp.7, 2013, https://doi.org/10.5302/J.ICROS.2013.13.1877
  2. Obstacle Avoidance of a Moving Sound Following Robot using Active Virtual Impedance vol.20, pp.2, 2014, https://doi.org/10.5302/J.ICROS.2014.13.1944
  3. Platform Design of Caterpillar Typed Electrical Vehicle vol.26, pp.4, 2016, https://doi.org/10.5391/JKIIS.2016.26.4.279