DOI QR코드

DOI QR Code

Localization and Autonomous Navigation Using GPU-based SIFT and Virtual Force for Mobile Robots

GPU 기반 SIFT 방법과 가상의 힘을 이용한 이동 로봇의 위치 인식 및 자율 주행 제어

  • Tak, Myung Hwan (Dept. of Control and Robotics Engineering, Kunsan National University) ;
  • Joo, Young Hoon (Dept. of Control and Robotics Engineering, Kunsan National University)
  • Received : 2016.08.25
  • Accepted : 2016.08.29
  • Published : 2016.10.01

Abstract

In this paper, we present localization and autonomous navigation method using GPU(Graphics Processing Unit)-based SIFT(Scale-Invariant Feature Transform) algorithm and virtual force method for mobile robots. To do this, at first, we propose the localization method to recognize the landmark using the GPU-based SIFT algorithm and to update the position using extended Kalman filter. And then, we propose the A-star algorithm for path planning and the virtual force method for autonomous navigation of the mobile robot. Finally, we demonstrate the effectiveness and applicability of the proposed method through some experiments using the mobile robot with OPRoS(Open Platform for Robotic Services).

Keywords

References

  1. W. Burgard, D. Fox, and S. Thrun, "Probabilistic Robotics". MIT Press, 2005.
  2. P. Newman. "On the Structure and Solution of the Simultaneous Localization and Map Building Problem", Ph.D thesis, Univ. of Sydney, 2000.
  3. K. Okuyama, T. Kawasaki, and V. Kroumov, "Localization and Position Correction for Mobile Robot Using Artificial Visual Landmarks", Advanced Mechatronic Systems (ICAMechS ) 2011 Int. Conf. on, pp. 414-418, Aug., 2011,
  4. F. Bonin-Font, A. Ortiz, and G. Oliver, "Visual Navigation for Mobile Robots: A Survey," J. Intelligent and Robotic Systems, vol. 53, pp.263-96., 2008 https://doi.org/10.1007/s10846-008-9235-4
  5. M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba, "A solution to the simultaneous localization and map building (SLAM) Problem," IEEE Trans. Robot. Automat. Vol. 17, No. 3, pp. 229-241, 2001. https://doi.org/10.1109/70.938381
  6. S. B. Williams. "Efficient Solution to Autonomous Mapping and Navigation Problems." Ph.D thesis, University of Sydney, Australian Centre for Field Robotics, September 2001.
  7. T. Bailey, J. Nieto, J. Guivant, M. Stevens and E. Nebot "Consistency of the EKF-SLAM algorithm", Proc. 2006 IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 3562-3568, 2006.
  8. D. Fox, S. Thrun, F. Dellaert, W. Burgard, A. Doucet, N. de Freitas, and N. Gordon, "Particle filters for mobile robot localization", Sequential Monte Carlo Methods in Practice, 2000.
  9. S. Se, D. Lowe, and J. Little, "Vision-based mobile robot localization and mapping using scale-invariant features", Proc. Int. Conf. Robot. Autom., pp. 2051-2058, 2001
  10. W. T. Huang, C. L. Tsai and H. Y. Lin., "Mobile robot localization using ceiling landmarks and images captured from an RGB-D camera", Advanced Intelligent Mechatronics (AIM ) 2012 IEEE/ASME Int. Conf. on, pp. 855-860, July, 2012.
  11. J. Leonard and H. Durrant-Whyte, "Mobile robot localization by tracking geometric beacons", IEEE Trans. Robot. Automat., Vol. 7, No. 3 , pp. 376-382, 1991 https://doi.org/10.1109/70.88147
  12. S. Y. Hwang and J.-B. Song, "Upward monocular camera based SLAM using corner and door features," Proc. of the IFAC 17th World Congress, pp. 1663-1668, July 2008.
  13. P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, "RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments," in the 12th Int. Symp. on Experimental Robotics (ISER), 2010.
  14. Microsoft. http://www.xbox.com/en-US/kinect, 2010.
  15. A. C. Murillo, J. J. Guerrero, and C. Sagues, "SURF features for efficient robot localization with omnidirectional images" 2007 IEEE Int. Conf. on Robotics and Automation, pp. 3901-3907, April, 2007.
  16. S. N. Sinha, J. M. Frahm, M. Pollefeys, and Y. Genc, "GPU-based video feature tracking and matching," in EDGE, Workshop on Edge Computing Using New Commodity Architectures, 2006.
  17. https://developer.nvidia.com/
  18. http://cs.unc.edu/-ccwu/siftgpu/
  19. Y. Caseau, "Heuristics for Large Constrained Vehicle Routing Problems", Journal of Heuristics, Vol. 5, pp. 281-303, 1999. https://doi.org/10.1023/A:1009661600931
  20. J. S. Kim and Y. H. Joo, "Shortest path searching algorithm for AGV based on working environmental model", Journal of Korean Institute of Intelligent Systems (in Korean ), Vol. 17, No. 5, pp. 654-659, Oct., 2007. https://doi.org/10.5391/JKIIS.2007.17.5.654
  21. Y. Koren and J. Borenstein, "Potential field methods and their inherent limitations for mobile robot navigation," Proc. of the IEEE Int. Conf. on Robotics and Automation, Vol. 2, pp. 1398-1404, Apr. 1991.
  22. J. S. Kim, M. H. Tak, Y. H. Joo, Y. J. Cho, C. E. Lee, and S. H. Ji, "Behavior Control for the Swarm Robots with Network Connectivity", 2012 9th Int. Conf. on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 337-340, Nov., 2012.
  23. http://www.ropros.org/display/opros/OPRoS+Wiki
  24. http://www.ros.org/wiki/kinect/Tutorials
  25. http://www.ros.org/wiki/kinect_node