• Title/Summary/Keyword: virtual plane

Search Result 183, Processing Time 0.028 seconds

Constraint Analysis and Reduction of Over-Constraints for Tolerance Design of Assemblies - A Case Study of Ball Valve Design (조립체 공차설계를 위한 제약해석과 과잉제약 개선 - 볼밸브 설계 사례연구)

  • Park, Jun Il;Yim, Hyunjune
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.669-681
    • /
    • 2016
  • Mechanical designers often make mistakes that result in unwanted over-constraints, causing difficulty in assembly operations and residual stress due to interference among parts. This study is concerned with detection and elimination of over-constraints. Screw theory is a general method that is used for constraint analysis of an assembly and motion analysis of a mechanism. Mechanical assemblies with plane-plane, pin-hole, and pin-slot constraint pairs are analyzed using screw theory to illustrate its utility. As a real-world problem, a ball valve design is analyzed using the same method, and several unwanted over-constraints are detected. Elimination measures are proposed. Nominal dimensions of some parts are adjusted, and dimensions and tolerances of the pins and holes are modified using the virtual condition boundary concept. The revised design is free of over-constraints. General procedure for applying screw theory to constraint analysis is established and demonstrated; it will contribute to improving quality of assembly designs.

A constant tendon moment arms finger model in the sagittal plane

  • Lee, K.H.
    • Proceedings of the ESK Conference
    • /
    • 1992.10a
    • /
    • pp.46-53
    • /
    • 1992
  • Finger movements in the sagittal plane mainly consist of flexion and extension about the metacarpophalangeal(MCP) and proximal interphalangeal(PIP) joints. A kinematic finger model was developed with the assumption of constant tendon moment arms. Equations of static equilibrium were derived for the finger model using the principle of virtual work. Equations of static equilibrium for the finger model were indeterminate since only three equations were available for five unknown variables(forces). The number of variables was reduced based on information on muscular activities in finger movements. Then the amounts of forces which muscles exerted to maintain static equilibrium against external loads were computed from the equilibrium equations. The muscular forces were expressed mathematically as functions of finger positions, tendon moment arms, lengths of phalanges, and the magnitude and direction of external load. The external finger strength were computed using the equations of muscular forces and anatomical data. Experiments were performed to measure finger strengths. Measurements were taken in combinations of four finger positions and four directions of force exertions. Validation of the finger models and of procedure to estimate finger strengths was done by comparing the results of computations and experiments. Significang differences were found between the predicted and measured finger strengths. However, the trends of finger strengths with respect to finger positions were similar inboth the predicted and measured. These findings indicate that the finger model and the procedure to predict finger strengths were correctly developed.

  • PDF

Manufacture of 3-Dimensional Image and Virtual Dissection Program of the Human Brain (사람 뇌의 3차원 영상과 가상해부 풀그림 만들기)

  • Chung, M.S.;Lee, J.M.;Park, S.K.;Kim, M.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.57-59
    • /
    • 1998
  • For medical students and doctors, knowledge of the three-dimensional (3D) structure of brain is very important in diagnosis and treatment of brain diseases. Two-dimensional (2D) tools (ex: anatomy book) or traditional 3D tools (ex: plastic model) are not sufficient to understand the complex structures of the brain. However, it is not always guaranteed to dissect the brain of cadaver when it is necessary. To overcome this problem, the virtual dissection programs of the brain have been developed. However, most programs include only 2D images that do not permit free dissection and free rotation. Many programs are made of radiographs that are not as realistic as sectioned cadaver because radiographs do not reveal true color and have limited resolution. It is also necessary to make the virtual dissection programs of each race and ethnic group. We attempted to make a virtual dissection program using a 3D image of the brain from a Korean cadaver. The purpose of this study is to present an educational tool for those interested in the anatomy of the brain. The procedures to make this program were as follows. A brain extracted from a 58-years old male Korean cadaver was embedded with gelatin solution, and serially sectioned into 1.4 mm-thickness using a meat slicer. 130 sectioned specimens were inputted to the computer using a scanner ($420\times456$ resolution, true color), and the 2D images were aligned on the alignment program composed using IDL language. Outlines of the brain components (cerebrum, cerebellum, brain stem, lentiform nucleus, caudate nucleus, thalamus, optic nerve, fornix, cerebral artery, and ventricle) were manually drawn from the 2D images on the CorelDRAW program. Multimedia data, including text and voice comments, were inputted to help the user to learn about the brain components. 3D images of the brain were reconstructed through the volume-based rendering of the 2D images. Using the 3D image of the brain as the main feature, virtual dissection program was composed using IDL language. Various dissection functions, such as dissecting 3D image of the brain at free angle to show its plane, presenting multimedia data of brain components, and rotating 3D image of the whole brain or selected brain components at free angle were established. This virtual dissection program is expected to become more advanced, and to be used widely through Internet or CD-title as an educational tool for medical students and doctors.

  • PDF

Adaptive Block-based Depth-map Coding Method (적응적 블록기반 깊이정보 맵 부호화 방법)

  • Kim, Kyung-Yong;Park, Gwang-Hoon;Suh, Doug-Young
    • Journal of Broadcast Engineering
    • /
    • v.14 no.5
    • /
    • pp.601-615
    • /
    • 2009
  • This paper proposes an efficient depth-map coding method for generating virtual-view images in 3D-Video. Virtual-view images can be generated by the view-interpolation based on the depth-map of the image. A conventional video coding method such as H.264 has been used. However, a conventional video coding method does not consider the image characteristics of the depth-map. Therefore, this paper proposes an adaptive depth-map coding method that can select between the H.264/AVC coding scheme and the proposed gray-coded bit plane-based coding scheme in a unit of block. This improves the coding efficiency of the depth-map data. Simulation results show that the proposed method, in comparison with the H.264/AVC coding scheme, improves the average BD-rate savings by 7.43% and the average BD-PSNR gains by 0.5dB. It also improves the subjective picture quality of synthesized virtual-view images using decoded depth-maps.

Evaluation of Tooth Movement and Arch Dimension Change in the Mandible Using a New Three-dimensional Indirect Superimposition Method

  • Oh, Hyun-Jun;Baek, Seung-Hak;Yang, Il-Hyung
    • Journal of Korean Dental Science
    • /
    • v.7 no.2
    • /
    • pp.66-79
    • /
    • 2014
  • Purpose: To analyze the amount and pattern of tooth movement and the changes in arch dimension of mandibular dentition after orthodontic treatment using a new three-dimensional (3D)-indirect superimposition method. Materials and Methods: The samples consisted of fifteen adult patients with class I bialveolar protrusion and minimal anterior crowding, treated by extraction of four first premolars with conventional sliding mechanics. After superimposition of 3D-virtual maxillary models before and after treatment using best-fit method, 3D-virtual mandibular model at each stage was placed into a common coordinate of superimposition using 3D-bite information, which resulted in 3D-indirect superimposition for mandibular dentition. The changes in mandibular dental and arch dimensional variables were measured with Rapidform 2006 (INUS Technology). Paired t-test was used for statistical analysis. Result: The anterior teeth moved backward, displaced laterally, and inclined lingually. The posterior teeth showed statistically significant contraction toward midsagittal plane. The amounts of backward movement of anterior teeth and forward movement of posterior teeth showed a ratio of 6 : 1. Although the inter-canine width increased slightly (0.8 mm, P<0.05), the inter-second premolar, inter-first molar, and inter-second molar widths decreased significantly with similar amounts (2.2 mm, P<0.05; 2.3 mm, P<0.01; 2.3 mm, P<0.001). The molar depth decreased (6.7 mm, P<0.001) but canine depth did not change. Conclusion: A new 3D-indirect superimposition of the mandibular dentitions using best-fit method and 3D-bite information can present a guideline for virtual treatment planning in terms of tooth position and arch dimension.

Simulation of Radiation Imaging based on the Scanning of Pin-hole Stereo Vision Sensors (핀홀 스테레오 비전 센서의 공간 스캔을 통한 방사선의 영상화 시뮬레이션)

  • Park, Soon-Yong;Baek, Seung-Hae;Choi, Chang-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1671-1680
    • /
    • 2014
  • There are always much concern about the leakage of radiation materials in the event of dismantle or unexpected accident of nuclear power plant. In order to remove the leakage of radiation materials, appropriate dispersion detection techniques for radiation materials are necessary. However, because direct handling of radiation materials is highly restricted and risky, developing radiation-related techniques needs computer simulation in advance to evaluate the feasibility. In this paper, we propose a radiation imaging technique which can acquire 3D dispersion information of radiation materials and tested by simulation. Using two virtual 1D radiation sensors, we obtain stereo radiation images and acquire the 3D depth to virtual radiation materials using stereo disparity. For point and plane type virtual radiation materials, the possibility of the acquisition of stereo radiation image and 3D information are simulated.

Generation of Humanoid Walking Motion Adapted to the Ground's Sliding Properties (지면의 미끄러운 정도에 따른 캐릭터의 걷기 동작 생성)

  • Lee KumHee;Song MiYoung;Cho HyungJe
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.157-166
    • /
    • 2005
  • In 3D virtual environment the description of character' s movement that has utilized the conventional key-frame technique is gradually being developed toward the application of motion control method to generate more realistic and natural motion. Even the motion control method, however, has the limitation for expression of character's motion adapted to the ground properties of virtual world. That is, the walking motions of character are not only, for the most part, so uniform simple and repeated often as to feel to be tedious, but also the unnatural motion in which the tips of the toes soak through a plane or float in the air discording with the conditions of terrain lowers the semblance of reality. This paper proposes an adaptive motion control method for human figure locomotion in virtual environments or games, in which the walking motion is dynamiccally adapted to the ground's sliding properties. We compute an optimal parameters for one cycle of walking motion adapted to the ground properties by combining the coefficient of friction and centripetal force, and therefrom we induce a set of nonskid speed corresponding to various sliding properties of the ground.

Efficient Label Placement using Overlap-free Region and Background Analysis (중첩 자유 영역과 배경 분석을 이용한 효율적인 라벨 배치)

  • Lee, San-Won;Jeong, Seung-Do;Choi, Byung-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.85-96
    • /
    • 2006
  • This paper deal with a method for efficient placing 2 dimensional virtual labels on the view plane. The proposed method has suitable computational costs for realtime processing and it overcomes the local minima problem which is not solved in previous automatic label placement algorithms, and also it enhances readability by placing labels in less congestion area on the view plane. Background analysis must be considered for label placement. However previous works do not concern with this problem seriously. And furthermore, automatic label placement algorithm and background analysis algorithm have been studied separately in their own field. This paper proposed the background analysis method using background color and texture component to enhance readability, and it is the first research about analyzing the background of color image and applying it in automatic label placement field. This paper shown improved placement performance through combining automatic label placement algorithm and background analysis algorithm organically, and various experiments verified it.

A Study on the Dynamic Post-Buckling Behavior of the Plane Frame Structures Subjected to Circulatory Forces (Circulatory Force를 받는 평면(平面)뼈대 구조물(構造物)의 동적(動的) 후좌굴(後座屈) 거동(擧動)에 관한 연구(硏究))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.13-24
    • /
    • 1988
  • A geometrically nonlinear analysis procedure for plane frame structures in order to study the static and dynamic post-buckling behavior of these structures subjected to circulatory forces is presented. The elastic and geometric stiffness matrices, the mass matrix and load correction stiffness matrix are derived from the extended virtual work principle, where the tangent stiffness matrix becomes non-symmetric due to the effects of non-conservative circulatory forces. The dynamic analysis of plane frame structures subjected to circulatory forces in pre- and post-buckling ranges is carried out by integrating the equations of motion directly by the numerically stable Newmark method. Numerical results are presented in order to demonstrate the vality and accuracy of the proposed procedure.

  • PDF

Helicopter Pilot Metaphor for 3D Space Navigation and its implementation using a Joystick (3차원 공간 탐색을 위한 헬리콥터 조종사 메타포어와 그 구현)

  • Kim, Young-Kyoung;Jung, Moon-Ryul;Paik, Doowon;Kim, Dong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.1
    • /
    • pp.57-67
    • /
    • 1997
  • The navigation of virtual space comes down to the manipulation of the virtual camera. The movement of the virtual cameras has 6 degrees of freedom. However, input devices such as mouses and joysticks are 2D. So, the movement of the camera that corresponds to the input device is 2D movement at the given moment. Therefore, the 3D movement of the camera can be implemented by means of the combination of 2D and 1D movements of the camera. Many of the virtual space navigation browser use several navigation modes to solve this problem. But, the criteria for distinguishing different modes are not clear, somed of the manipulations in each mode are repeated in other modes, and the kinesthetic correspondence of the input devices is often confusing. Hence the user has difficulty in making correct decisions when navigating the virtual space. To solve this problem, we use a single navigation metaphore in which different modes are organically integrated. In this paper we propose a helicopter pilot metaphor. Using the helicopter pilot metaphore means that the user navigates the virtual space like a pilot of a helicopter flying in space. In this paper, we distinguished six 2D movement spaces of the helicopter: (1) the movement on the horizontal plane, (2) the movement on the vertical plane,k (3) the pitch and yaw rotations about the current position, (4) the roll and pitch rotations about the current position, (5) the horizontal and vertical turning, and (6) the rotation about the target object. The six 3D movement spaces are visualized and displayed as a sequence of auxiliary windows. The user can select the desired movement space simply by jumping from one window to another. The user can select the desired movement by looking at the displaced 2D movement spaces. The movement of the camera in each movement space is controlled by the usual movements of the joystick.

  • PDF