• 제목/요약/키워드: virtual network embedding

검색결과 14건 처리시간 0.021초

Virtual Network Embedding based on Node Connectivity Awareness and Path Integration Evaluation

  • Zhao, Zhiyuan;Meng, Xiangru;Su, Yuze;Li, Zhentao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3393-3412
    • /
    • 2017
  • As a main challenge in network virtualization, virtual network embedding problem is increasingly important and heuristic algorithms are of great interest. Aiming at the problems of poor correlation in node embedding and link embedding, long distance between adjacent virtual nodes and imbalance resource consumption of network components during embedding, we herein propose a two-stage virtual network embedding algorithm NA-PVNM. In node embedding stage, resource requirement and breadth first search algorithm are introduced to sort virtual nodes, and a node fitness function is developed to find the best substrate node. In link embedding stage, a path fitness function is developed to find the best path in which available bandwidth, CPU and path length are considered. Simulation results showed that the proposed algorithm could shorten link embedding distance, increase the acceptance ratio and revenue to cost ratio compared to previously reported algorithms. We also analyzed the impact of position constraint and substrate network attribute on algorithm performance, as well as the utilization of the substrate network resources during embedding via simulation. The results showed that, under the constraint of substrate resource distribution and virtual network requests, the critical factor of improving success ratio is to reduce resource consumption during embedding.

Virtual Network Embedding with Multi-attribute Node Ranking Based on TOPSIS

  • Gon, Shuiqing;Chen, Jing;Zhao, Siyi;Zhu, Qingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.522-541
    • /
    • 2016
  • Network virtualization provides an effective way to overcome the Internet ossification problem. As one of the main challenges in network virtualization, virtual network embedding refers to mapping multiple virtual networks onto a shared substrate network. However, existing heuristic embedding algorithms evaluate the embedding potential of the nodes simply by the product of different resource attributes, which would result in an unbalanced embedding. Furthermore, ignoring the hops of substrate paths that the virtual links would be mapped onto may restrict the ability of the substrate network to accept additional virtual network requests, and lead to low utilization rate of resource. In this paper, we introduce and extend five node attributes that quantify the embedding potential of the nodes from both the local and global views, and adopt the technique for order preference by similarity ideal solution (TOPSIS) to rank the nodes, aiming at balancing different node attributes to increase the utilization rate of resource. Moreover, we propose a novel two-stage virtual network embedding algorithm, which maps the virtual nodes onto the substrate nodes according to the node ranks, and adopts a shortest path-based algorithm to map the virtual links. Simulation results show that the new algorithm significantly increases the long-term average revenue, the long-term revenue to cost ratio and the acceptance ratio.

A Prototype Virtual Network Embedding System using OpenStack

  • Fukushima, Yukinobu;Sato, Kohei;Goda, Itsuho;Ryu, Heung-Gyoon;Yokohira, Tokumi
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권1호
    • /
    • pp.60-65
    • /
    • 2017
  • Network virtualization enables us to make efficient use of resources in a physical network by embedding multiple virtual networks in the physical network. In this paper, we develop a prototype of a virtual network embedding system. Our system consists of OpenStack, which is an open source cloud service platform, and shell scripts. Because OpenStack does not provide a quality of service control function, we realize bandwidth reservation for virtual links by making use of the ingress policing function of Open vSwitch, which is a virtual switch used in OpenStack. The shell scripts in our system automatically construct the required virtual network on the physical network using the OpenStack command-line interface, and they reserve bandwidth for virtual links using the Open vSwitch command. Experimental evaluation confirms that our system constructs the requested virtual network and appropriately allocates node and link resources to it.

Virtual Network Embedding through Security Risk Awareness and Optimization

  • Gong, Shuiqing;Chen, Jing;Huang, Conghui;Zhu, Qingchao;Zhao, Siyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권7호
    • /
    • pp.2892-2913
    • /
    • 2016
  • Network virtualization promises to play a dominant role in shaping the future Internet by overcoming the Internet ossification problem. However, due to the injecting of additional virtualization layers into the network architecture, several new security risks are introduced by the network virtualization. Although traditional protection mechanisms can help in virtualized environment, they are not guaranteed to be successful and may incur high security overheads. By performing the virtual network (VN) embedding in a security-aware way, the risks exposed to both the virtual and substrate networks can be minimized, and the additional techniques adopted to enhance the security of the networks can be reduced. Unfortunately, existing embedding algorithms largely ignore the widespread security risks, making their applicability in a realistic environment rather doubtful. In this paper, we attempt to address the security risks by integrating the security factors into the VN embedding. We first abstract the security requirements and the protection mechanisms as numerical concept of security demands and security levels, and the corresponding security constraints are introduced into the VN embedding. Based on the abstraction, we develop three security-risky modes to model various levels of risky conditions in the virtualized environment, aiming at enabling a more flexible VN embedding. Then, we present a mixed integer linear programming formulation for the VN embedding problem in different security-risky modes. Moreover, we design three heuristic embedding algorithms to solve this problem, which are all based on the same proposed node-ranking approach to quantify the embedding potential of each substrate node and adopt the k-shortest path algorithm to map virtual links. Simulation results demonstrate the effectiveness and efficiency of our algorithms.

Topology-aware Virtual Network Embedding Using Multiple Characteristics

  • Liao, Jianxin;Feng, Min;Li, Tonghong;Wang, Jingyu;Qing, Sude
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권1호
    • /
    • pp.145-164
    • /
    • 2014
  • Network virtualization provides a promising tool to allow multiple heterogeneous virtual networks to run on a shared substrate network simultaneously. A long-standing challenge in network virtualization is the Virtual Network Embedding (VNE) problem: how to embed virtual networks onto specific physical nodes and links in the substrate network effectively. Recent research presents several heuristic algorithms that only consider single topological attribute of networks, which may lead to decreased utilization of resources. In this paper, we introduce six complementary characteristics that reflect different topological attributes, and propose three topology-aware VNE algorithms by leveraging the respective advantages of different characteristics. In addition, a new KS-core decomposition algorithm based on two characteristics is devised to better disentangle the hierarchical topological structure of virtual networks. Due to the overall consideration of topological attributes of substrate and virtual networks by using multiple characteristics, our study better coordinates node and link embedding. Extensive simulations demonstrate that our proposed algorithms improve the long-term average revenue, acceptance ratio, and revenue/cost ratio compared to previous algorithms.

Different QoS Constraint Virtual SDN Embedding under Multiple Controllers

  • Zhao, Zhiyuan;Meng, Xiangru;Lu, Siyuan;Su, Yuze
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권9호
    • /
    • pp.4144-4165
    • /
    • 2018
  • Software-defined networking (SDN) has emerged as a promising technology for network programmability and experiments. In this work, we focus on virtual network embedding in multiple controllers SDN network. In SDN virtualization environment, virtual SDN networks (vSDNs) operate on the shared substrate network and managed by their each controller, the placement and load of controllers affect vSDN embedding process. We consider controller placement, vSDN embedding, controller adjustment as a joint problem, together considering different quality of service (QoS) requirement for users, formulate the problem into mathematical models to minimize the average time delay of control paths, the load imbalance degree of controllers and embedding cost. We propose a heuristic method which places controllers and partitions control domains according to substrate SDN network, embeds different QoS constraint vSDN requests by corresponding algorithms, and migrates switches between control domains to realize load balance of controllers. The simulation results show that the proposed method can satisfy different QoS requirement of tenants, keep load balance between controllers, and work well in the acceptance ratio and revenue to cost ratio for vSDN embedding.

A Coordinated Heuristic Approach for Virtual Network Embedding in Cloud Infrastructure

  • Nia, Nahid Hamzehee;Adabi, Sepideh;Nategh, Majid Nikougoftar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2346-2361
    • /
    • 2017
  • A major challenge in cloud infrastructure is the efficient allocation of virtual network elements on top of substrate network elements. Path algebra is a mathematical framework which allows the validation and convergence analysis of the mono-constraint or multi-constraint routing problems independently of the network topology or size. The present study proposes a new heuristic approach based on mathematical framework "paths algebra" to map virtual nodes and links to substrate nodes and paths in cloud. In this approach, we define a measure criterion to rank the substrate nodes, and map the virtual nodes to substrate nodes according to their ranks by using a greedy algorithm. In addition, considering multi-constraint routing in virtual link mapping stage, the used paths algebra framework allows a more flexible and extendable embedding. Obtained results of simulations show appropriate improvement in acceptance ratio of virtual networks and cost incurred by the infrastructure networks.

Cognitive Virtual Network Embedding Algorithm Based on Weighted Relative Entropy

  • Su, Yuze;Meng, Xiangru;Zhao, Zhiyuan;Li, Zhentao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1845-1865
    • /
    • 2019
  • Current Internet is designed by lots of service providers with different objects and policies which make the direct deployment of radically new architecture and protocols on Internet nearly impossible without reaching a consensus among almost all of them. Network virtualization is proposed to fend off this ossification of Internet architecture and add diversity to the future Internet. As an important part of network virtualization, virtual network embedding (VNE) problem has received more and more attention. In order to solve the problems of large embedding cost, low acceptance ratio (AR) and environmental adaptability in VNE algorithms, cognitive method is introduced to improve the adaptability to the changing environment and a cognitive virtual network embedding algorithm based on weighted relative entropy (WRE-CVNE) is proposed in this paper. At first, the weighted relative entropy (WRE) method is proposed to select the suitable substrate nodes and paths in VNE. In WRE method, the ranking indicators and their weighting coefficients are selected to calculate the node importance and path importance. It is the basic of the WRE-CVNE. In virtual node embedding stage, the WRE method and breadth first search (BFS) algorithm are both used, and the node proximity is introduced into substrate node ranking to achieve the joint topology awareness. Finally, in virtual link embedding stage, the CPU resource balance degree, bandwidth resource balance degree and path hop counts are taken into account. The path importance is calculated based on the WRE method and the suitable substrate path is selected to reduce the resource fragmentation. Simulation results show that the proposed algorithm can significantly improve AR and the long-term average revenue to cost ratio (LTAR/CR) by adjusting the weighting coefficients in VNE stage according to the network environment. We also analyze the impact of weighting coefficient on the performance of the WRE-CVNE. In addition, the adaptability of the WRE-CVNE is researched in three different scenarios and the effectiveness and efficiency of the WRE-CVNE are demonstrated.

가상 네트워크 대응 시 노드 선택 기준에 대한 고찰 (A Study on Node Selection Strategy for the Virtual Network Embedding)

  • 우미애
    • 한국통신학회논문지
    • /
    • 제39B권8호
    • /
    • pp.491-498
    • /
    • 2014
  • 현재의 인터넷은 경직성으로 인해 새로운 서비스 요구를 수용하기 어렵다. 이러한 문제를 해결하기 위한 방안중 하나가 네트워크 가상화다. 본 논문에서는 네트워크 가상화를 위한 휴리스틱 가상 네트워크 대응 방안을 제안한다. 제안하는 방안에서는 가상 네트워크를 실제 네트워크에 대응시킬 때, 실제 노드가 가상 링크 조건을 만족시킬 수 있는 가능성이 있는 지 확인하고 가상 노드와 실제 노드에 우선순위를 부여하여 우선순위에 따라 대응 순서를 정한다. 또한 대응되는 실제 노드가 클러스터를 형성할 수 있도록 한다. 제안하는 방안의 성능을 시간 복잡도와 가상 네트워크 수락율로 평가한다.

Cost-Efficient Virtual Optical Network Embedding for Manageable Inter-Data-Center Connectivity

  • Perello, Jordi;Pavon-Marino, Pablo;Spadaro, Salvatore
    • ETRI Journal
    • /
    • 제35권1호
    • /
    • pp.142-145
    • /
    • 2013
  • Network virtualization opens the door to novel infrastructure services offering connectivity and node manageability. In this letter, we focus on the cost-efficient embedding of on-demand virtual optical network requests for interconnecting geographically distributed data centers. We present a mixed integer linear programming formulation that introduces flexibility in the virtual-physical node mapping to optimize the usage of the underlying physical resources. Illustrative results show that flexibility in the node mapping can reduce the number of add-drop ports required to serve the offered demands by 40%.