KSII Transactions on Internet and Information Systems (TIIS)
/
제9권12호
/
pp.4950-4966
/
2015
Cloud providers now face the problem of estimating the amount of computing resources required to satisfy a future workload. In this paper, a virtual machine provisioning (VMP) mechanism is designed to adapt workload fluctuation. The arrival rate of forthcoming jobs is predicted for acquiring the proper service rate by adopting an exponential smoothing (ES) method. The proper service rate is estimated to guarantee the service level agreement (SLA) constraints by using a diffusion approximation statistical model. The VMP problem is formulated as a facility location problem. Furthermore, it is characterized as the maximization of submodular function subject to the matroid constraints. A greedy-based VMP algorithm is designed to obtain the optimal virtual machine provision pattern. Simulation results illustrate that the proposed mechanism could increase the average profit efficiently without incurring significant quality of service (QoS) violations.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권4호
/
pp.1520-1542
/
2020
Traditional software testing typically uses many physical resources to manually build various test environments, resulting in high resource costs and long test time due to limited resources, especially for small enterprises. Cloud computing can provide sufficient low-cost virtual resources to alleviate these problems through the virtualization of physical resources. However, the provision of various test environments and services for implementing software testing rapidly and conveniently based on cloud computing is challenging. This paper proposes a multilayer cloud testing model based on cloud computing and implements a hybrid cloud testing system based on virtual machines (VMs) and networks. This system realizes the automatic and rapid creation of test environments and the remote use of test tools and test services. We conduct experiments on this system and evaluate its applicability in terms of the VM provision time, VM performance and virtual network performance. The experimental results demonstrate that the performance of the VMs and virtual networks is satisfactory and that this system can improve the test efficiency and reduce test costs through rapid virtual resource provision and convenient test services.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권3호
/
pp.1164-1183
/
2019
The rapid development of cloud computing and high requirements of operators requires strong support from the underlying Data Center Networks. Therefore, the effectiveness of using resources in the data center networks becomes a point of concern for operators and material for research. In this paper, we discuss the online virtual-cluster provision problem for multiple tenants with an aim to decide when and where the virtual cluster should be placed in a data center network. Our objective is maximizing the total revenue for the data center networks under the constraints. In order to solve this problem, this paper divides it into two parts: online multi-tenancy scheduling and virtual cluster placement. The first part aims to determine the scheduling orders for the multiple tenants, and the second part aims to determine the locations of virtual machines. We first approach the problem by using the variational inequality model and discuss the existence of the optimal solution. After that, we prove that provisioning virtual clusters for a multi-tenant data center network that maximizes revenue is NP-hard. Due to the complexity of this problem, an efficient heuristic algorithm OMS (Online Multi-tenancy Scheduling) is proposed to solve the online multi-tenancy scheduling problem. We further explore the virtual cluster placement problem based on the OMS and propose a novel algorithm during the virtual machine placement. We evaluate our algorithms through a series of simulations, and the simulations results demonstrate that OMS can significantly increase the efficiency and total revenue for the data centers.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권7호
/
pp.3026-3049
/
2016
Cloud computing promises high performance and cost-efficiency. However, most cloud infrastructures operate at a low utilization, which greatly adheres cost effectiveness. Previous works focus on seeking efficient virtual machine (VM) consolidation strategies to increase the utilization of virtual resources in production environment, but overlook the under-utilization of backup virtual resources. We propose a heuristic time sharing policy of backup VMs derived from the restless multi-armed bandit problem. The proposed policy achieves increasing backup virtual resources utilization and providing high availability. Both the results in simulation and prototype system experiments show that the traditional 1:1 backup provision can be extended to 1:M (M≫1) between the backup VMs and the service VMs, and the utilization of backup VMs can be enhanced significantly.
Gun-Woo Kim;Seo-Yeon Gu;Seok-Jae Moon;Byung-Joon Park
International journal of advanced smart convergence
/
제12권4호
/
pp.126-133
/
2023
Recent advancements in cloud service virtualization technologies have witnessed a shift from a Virtual Machine-centric approach to a container-centric paradigm, offering advantages such as faster deployment and enhanced portability. Container orchestration has emerged as a key technology for efficient management and scheduling of these containers. However, with the increasing complexity and diversity of heterogeneous workloads and service types, resource scheduling has become a challenging task. Various research endeavors are underway to address the challenges posed by diverse workloads and services. Yet, a systematic approach to container orchestration for effective cloud management has not been clearly defined. This paper proposes the DRA-Engine (Dynamic Resource Allocation Engine) for resource scheduling in container orchestration. The proposed engine comprises the Request Load Procedure, Required Resource Measurement Procedure, and Resource Provision Decision Procedure. Through these components, the DRA-Engine dynamically allocates resources according to the application's requirements, presenting a solution to the challenges of resource scheduling in container orchestration.
International Journal of Computer Science & Network Security
/
제22권10호
/
pp.374-388
/
2022
Cloud computing has been one of the most critical technology in the last few decades. It has been invented for several purposes as an example meeting the user requirements and is to satisfy the needs of the user in simple ways. Since cloud computing has been invented, it had followed the traditional approaches in elasticity, which is the key characteristic of cloud computing. Elasticity is that feature in cloud computing which is seeking to meet the needs of the user's with no interruption at run time. There are traditional approaches to do elasticity which have been conducted for several years and have been done with different modelling of mathematical. Even though mathematical modellings have done a forward step in meeting the user's needs, there is still a lack in the optimisation of elasticity. To optimise the elasticity in the cloud, it could be better to benefit of Machine Learning algorithms to predict upcoming workloads and assign them to the scheduling algorithm which would achieve an excellent provision of the cloud services and would improve the Quality of Service (QoS) and save power consumption. Therefore, this paper aims to investigate the use of machine learning techniques in order to predict the workload of Physical Hosts (PH) on the cloud and their energy consumption. The environment of the cloud will be the school of computing cloud testbed (SoC) which will host the experiments. The experiments will take on real applications with different behaviours, by changing workloads over time. The results of the experiments demonstrate that our machine learning techniques used in scheduling algorithm is able to predict the workload of physical hosts (CPU utilisation) and that would contribute to reducing power consumption by scheduling the upcoming virtual machines to the lowest CPU utilisation in the environment of physical hosts. Additionally, there are a number of tools, which are used and explored in this paper, such as the WEKA tool to train the real data to explore Machine learning algorithms and the Zabbix tool to monitor the power consumption before and after scheduling the virtual machines to physical hosts. Moreover, the methodology of the paper is the agile approach that helps us in achieving our solution and managing our paper effectively.
다양한 센서 네트워크와 유비쿼터스 기술이 제공되는 지능형 협업 환경은 사용자를 위해 확장된 인터랙션을 제공할 수 있다. 기존의 인터랙션이 사용자와 컴퓨터 머신과의 직접적인 인터랙션이 주를 이룬 반면 새로 확장된 인터랙션은 사용자와 공간과의 인터랙션을, 실질적으로 공간을 구성하는, 관리와 제어가 가능한 구성요소와의 인터랙션을 나타낸다. 본 논문은 이러한 공간 인터랙션을 효과적으로 제공할 수 있도록 하기 위해서 공간 오브젝트를 등록, 인식하고, 특히 사용자의 의도에 맞는 태스크를 지원하기 위해 과거의 인터랙션 정보를 이용한 템플릿 기반 맵핑 알고리즘을 설계한다. 제안된 알고리즘을 이용하는 경우, 공간 오브젝트가 증가함에 따라 템플릿을 검색하여 처리하는데 드는 시스템의 비용이 어느 정도 향상되는지 실험을 통해 분석하도록 하며, 진행되는 모든 공간 인터랙션을 시각적으로 보여주기 위한 그래픽 기반의 도시 방법을 소개하고 결론을 맺는다.
본 논문은 최근 이동통신 네트워크에서 폭발적으로 증가하고 있는 비디오 트래픽이 야기한 문제와 요구사항의 해결책으로써, SDN(Software Defined Network)을 기반으로 하는 다중 무선 접속 기술(Multiple Radio Access Technology)의 제어 기법을 제안하고 그 성능을 자체 구축한 테스트베드를 통하여 평가한다. 이를 위하여, 먼저 사업자 입장에서 3rd-party의 비디오 트래픽을 사업자망으로부터 우회(off-loading)시키는 방안의 필요성과, 사용자에게 저비용으로 고속의 대용량 비디오 콘텐츠 서비스를 제공하는 방안에 대하여 논의한다. 또한 성능평가를 위한 테스트베드는 OpenStack 클라우드 및 SDN 기반으로 구축 하였다. 이를 통해, OpenFlow와 Open Switch를 이용하여 2개의 2.4GHz 무선 랜 링크와 3개의 5GHz 무선 랜 링크가 동시에 하나의 서비스를 지원하도록 함으로서 820 Mbps 급의 초고속 클라우드 비디오 서비스를 위한 전송 속도를 실현하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.