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Abstract 
 

Cloud providers now face the problem of estimating the amount of computing resources 
required to satisfy a future workload. In this paper, a virtual machine provisioning (VMP) 
mechanism is designed to adapt workload fluctuation. The arrival rate of forthcoming jobs is 
predicted for acquiring the proper service rate by adopting an exponential smoothing (ES) 
method. The proper service rate is estimated to guarantee the service level agreement (SLA) 
constraints by using a diffusion approximation statistical model. The VMP problem is 
formulated as a facility location problem. Furthermore, it is characterized as the 
maximization of submodular function subject to the matroid constraints. A greedy-based 
VMP algorithm is designed to obtain the optimal virtual machine provision pattern. 
Simulation results illustrate that the proposed mechanism could increase the average profit 
efficiently without incurring significant quality of service (QoS) violations. 
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1. Introduction 

 Recent years we have witnessed the popularity of cloud computing services and the 
drastic growth of data centers' deployment for provisioning computing resources. Meanwhile, 
the advances in virtualization technologies make it possible to create virtual computing 
clusters with high performance [1]. Naturally, a cloud in the real world is selfish, and would 
try any means to maximize its own profit [2], -i.e., the income from processing tasks minus 
the operational costs and expenses in electricity. And the customers in cloud are willing to 
experience services with quality guaranteed. Computing resource scheduling has been 
expected as a key solution for maximizing the providers' profit, and as well for protecting 
customers' quality of service (QoS) in cloud. 

In this paper, we consider the problem of scheduling randomly-arriving jobs onto different 
VMs in order to maximize the revenue whilst guaranteeing the service level agreement (SLA) 
constraints. We adopt the exponential smoothing (ES) prediction to forecast the arrival rate 
of forthcoming jobs. Then we adopt a diffusion approximation (DA) model to estimate the 
proper service rate for satisfying the demand for SLA. The virtual machine provisioning 
(VMP) problem is formulated as a facility location problem which is shown to be an 
NP-hard problem. Further, we make an equivalent analysis by introducing the concepts of 
submoduar function and matroid. Based on the analysis, we propose a VMP method to 
maximize the profit for a data center in cloud computing. 

The rest of the paper is organized as follows. In Section 2, we discuss the related works. In 
Section 3, we present the system model. In Section 4, we formulate the VMP problem and 
give some theoretical analysis of workload prediction and service rate acquisition. In Section 
5, we make the equivalent analysis of the VMP problem and propose the VMP algorithm. 
Section 6 shows the numerical results for the proposed mechanism. Finally, we conclude this 
paper in Section 7. 

2. Related Work 
As a large number of customers access the cloud service, there are many studies to solve 

the virtual machine provisioning (resource allocation) problem in cloud computing. Basic 
resource scheduling methods always consider two aspects : one is characteristics of 
workload, the other is characteristics of the resource in data center. The VMs can be 
provisioned in many different ways.  

Some algorithms have been investigated for improving the utilization ratio of resource, 
such as First Come First Service (FCFS) [3] [4], Shortest Job First (SJF) [5] [6], Max-Min 
scheduling [7]. An Adaptive First Come First Service (AFCFS) algorithm was developed in 
[3], where jobs were executed according to the order of job arriving time. The factor such as 
varying workloads and different workload patterns were not taken into account. Whereas, 
varying workloads and different workload patterns were taken into account in [4] to provide 
a comprehensive performance-cost analysis of the task scheduling. A comparative study for 
the SJF algorithm and an integrated grouping based scheduling with both priority-aware 
features and SJF was investigated in [5]. A queue based hybrid algorithm in conjunction with 
SJF was proposed in [6] to show the optimal performance in terms of waiting time and 
average respond time. An improved Max-Min task-scheduling algorithm was studied in [7] 
for improving the resource utilization as well as for reducing the respond time of tasks. It 
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first selected the task with the longest execution time (Max), calculated the estimated time of 
the tasks in each VM, then selected the VM with the shortest completion time (Min), and 
finally allocated the task to the VM.  

Some schemes intended to reduce the operational cost including electricity bills (the 
energy consumption). Two energy-aware virtual machine (VM) allocation algorithms were 
proposed in [8] to reduce the energy consumption of physical servers, nevertheless the delay 
metric was not considered. A modified best fit descending algorithm was proposed in [9] for 
minimizing the incremental power caused by a new VM placing, while it can not providing 
strict SLA for ensuring trivial performance degradation. A Modified Breadth First Search 
(MBFS) algorithm was designed in [10] to find the optimal VM for each task where tasks 
were prioritized and a VM tree was constructed before the execution of MBFS algorithm. 

Some other approaches focused on the SLA requirement of jobs, e.g., delay constraint [11] 
[12] [13]. A conservative backfilling algorithm was modified in [11] by utilizing the earliest 
deadline first (EDF) algorithm and the largest weight first (LWF) algorithm to guarantee the 
deadline while improving the resource utilization. However it did not consider the various 
types of VMs. The deadline information from the SLAs was used in [12] to make decisions 
for task assignment and deferral, while the heterogeneity of computing resources was 
neglected. The problem of virtual machines' consolidating while protecting the SLA of each 
virtual machine was investigated in [13]. 

 There are less researches in terms of profit maximization. Closely combined with an 
auction mechanism, a dynamic VM trading and scheduling algorithm was designed [2] to 
maximize the providers’ profit. It could optimally schedule randomly arriving jobs with 
different resource requirements and SLAs onto different data centers, and judiciously turn on 
and off servers in the clouds based on the current electricity prices. In contrast to the 
algorithm in [2], even with the same objective, we considered the profit of one cloud service 
provider, whereas the work of [2] studied on a federation of clouds. 

These proposed mechanisms only took the current loading status of VMs and the 
requirement of the requesting jobs into consideration, but the forthcoming jobs were not 
included. Although the information of the forthcoming jobs was unknown, an accurate 
prediction method could greatly help the resource allocation to make adequate decisions to 
maximize the profit. In [14], the author proposed prediction-based distributed capacity 
allocation and load redirect algorithms for IaaS cloud systems by minimizing the cost of 
running VMs. This prediction model was expected to be useful in context characterized by 
time series with non-stationary behaviour, which may not be suitable for our workload 
scenario. 

Although many researchers proposed scheduling method in cloud computing environment 
to improve the performance of the system and guarantee the delay constraints, there is till 
potential to improve the profit gained by the cloud providers. Hence, we design a 
greedy-based VMP mechanism integrated with ES prediction to increase the average profit 
efficiently without incurring significant QoS violations. 
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3. System Model 
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Fig. 1. System model of VM provisioning 

 
A system model of a data center in cloud computing is illustrated in Fig. 1. It consists of 

an application classifier, a predictor, a scheduler, num requests' queues, and K virtual 
machines clusters.The application classifier classifies the requests into different types. The 
predictor is capable of forecasting the future workload according to a historic record of past 
offered ones. The scheduler determines the amount of VMs serving the incoming 
applications over a period of time, and the num  queues are the buffers of requests waiting 
to be processed. 

The system runs in a time-slotted fashion, that is, the time horizon is partitioned into 
time-slot indexed by st . A time frame mt  is defined as the length of VMP period of sN  
time-slots. At the beginning of each time-slot st , the application classifier accepts and 
classifies various requests from customers without delay. Then job requests enter their 
dedicated queues. At the same time, the predictor predicts the arrival rate according to the 
current and historical data, and reports to the scheduler. During the time frame, the scheduler 
collects the data of requests' arrival rates at each time-slot and computes the average value, 
then estimates the proper serving rate using the DA model. Subsequently, it generates the 
virtual machine provisioning pattern. At the beginning of the next frame, the scheduler 
reallocates the virtual machines accordingly.  

Assume that the system serves num  types of applications. The arrival process of each 
type of applications into the data center is expressed as: 

( ){ } { }, 0 , 1,2, ,n n s sA A t t n num= ≥ ∈ = N ,    (1)                                                                  
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where nA is a non-homogeneous Poisson process and N  is the set of all types of 
applications. We suppose that ( )n sR t  users of type n come at st , and the average arrival 
rate of the workload during a frame is denoted as ( )n mtλ , i.e., 

( )
1

1( ) .
s

s

N

n m n s
ts

t R t
N

λ
=

= ∑         (2) 

Let ( )n sD t  denote the queuing and processing delay experienced by the applications of type 
n  arriving at st and max

nD  denote the respond delay bound for the application of type n . 
Associated with each type n , an SLA contract specifies the QoS requirements agreed 
between the service provider and the service user. We use the delay-bound violation 
probability to statistically characterize the SLA [15]. Accordingly the delay-bound violation 
probability cannot exceed the target probability, denoted by SLAp , given by: 

( )( )maxPrsup .SLA
n s n

t
D t D p≥ ≤               (3) 

We assume that each VM hosts a single request and multiple VMs hosting the same 
application can run in parallel at different physical locations. We also assume that K types 
of VMs develop K virtual clusters, corresponding to various sets of configurations of CPU, 
storage and memory. 

As the income and cost vary on a time frame basis. Hence, the provider has to face the 
VM scheduling problem to determine the optimal provision set of each application type in 
every frame according to the predicted workload, while guaranteeing SLA constraints. For 
type n , the predicted average arrival rate is denoted by ( )n̂ mtλ and the best serving rate is 
denoted by *( )n mtm  during time-frame mt . As we do VMP periodically, the current virtual 
machine provisioning is uncorrelated with the past ones. For the convenience of notation, we 
omit the time subscript in the formulation of VMP problem. 

4. VMP Problem Formulation 

4.1 Formulation of the VMP Problem 
The objective of the VMP problem is to determine both the type and the number of VMs 

able to serve requests with an arrival rate of ( )n̂ mtλ  for maximizing the profit while 
guaranteeing the delay constraint. We will study the VMP problem by assuming that we 
have known the best serving rate *

nµ  currently. We suppose that VMs are homogeneous in 
terms of processing capability for type n  and max

nm denotes the maximum service rate that 
a VM can reach while processing type n  application, then the number of VMs for 
processing type n  application is 

*

max .n
n

n

m m
m

=          (4) 

The required VMs for serving type n  applications are denoted by {1,2, , }.n nm= M  
As mentioned above, there are K  VM clusters, which constitute a set denoted by V . And 
capacities of VM clusters are ,jC j∀ ∈V . We say that the cluster is active if there are jobs 

being processed in it, thus we need a binary variable ,j jγ ∀ ∈V  to illustrate the state of the 
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cluster. And 1jγ =  means that the cluster j  is active. For VM clusters, we consider the 
electricity cost of running and cooling the servers as the main component of the operational 
cost in a data center, and simply model the operation cost as a constant, denoted by 

,jz j∀ ∈V . For purpose of clarity, we have another binary variable 

, , ,n
ij nn i jθ ∀ ∈ ∈ ∀ ∈N M V , where =1n

ijθ means that the thi  VM serving the thn  type 
application is hosted in cluster j . To be profitable, providers charge the customer for the 
certain service. Let , ,njp n j∀ ∈ ∀ ∈N V  be the service charge for accepting a job of type n  
hosted in a VM of type j , which remains fixed within a time-frame, but may vary across 
different frames. The VMP problem for maximizing the profit can be formulated as: 

max max

s.t , , (C1)

1, , , (C2)

n

n

n
nj ij j jjn i j

n
ij j

n i

n
ij n

j

p z

C j

n i

θ
θ γ

θ

θ

∈
∈ ∈ ∈

∈ ∈

∈

−

≤ ∀ ∈

= ∀ ∈ ∀ ∈

∑ ∑ ∑

∑ ∑

∑

VN M V

N M

V

V

N M
    (5) 

where = max( ), ,n
j ij nn iγ θ ∀ ∈ ∀ ∈N M . Constraint (C1) means that the number of VMs 

allocated to process the jobs should not exceed its capacity for each cluster, and constraint 
(C2) ensures that each VM cannot be hosted in two or more than two clusters. Given the all 
the types of applications and the profit function (namely the object function), finding the 
optimal VM set to maximize the profit is in conformity with the form of the facility location 
problem. 

Remark: Guaranteeing of the SLA requirement is not stated in the constraints. Since we 
have taken the QoS into consideration in the process of solving the proper service rate, the 
guarantee of delay is preemptive before we formulate the VMP problem. 

4.2 Workload Prediction 
Before we solve the VMP problem, we need to acquire the serving rate of the time frame 

mt  according to the prediction ( )n̂ mtλ . In the following we will discuss the workload 
prediction and serving rate acquisition respectively. 

To predict the average arrival rate ( )n̂ mtλ , we adopt a simple and efficient model, namely, 
the ES prediction model. In ES prediction, part of the historical data is weighted and 
averaged, in line with the principle of weighting more on fresh data. The predicted value is 
within the historical maximum and minimum. It can counter the effect of abnormal data and 
demonstrate the regular statistics information in data processing. In this work, we choose a 
version of ES prediction model [16] considering a certain time frame. At moment t , the 
sample of arrival rate is ( )y t , the ES model predicts the arrival rate mt  steps ahead 

( )my t t+ . The static smoothing coefficient is ( )0 1α α< < , and we adopt a dynamic 
smoothing coefficient 

( )1
t t

αϕ
α

=
−

.         (6) 

When t1,0 1t ϕ> < < , and tt 0
limϕ α
→

= . Thus, the first order smooth value and the second 
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order smooth value at time t  are : 

               
( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
1

2 1 2
1

( ) 1 ,

1 .

t
t t t t

t
t t t t t

s y t s

s s s

ϕ ϕ

ϕ ϕ
−

−

 = + −


= + −
      (7) 

 

The prediction equation is in a simple linear form, expressed as 

     ( ) ,m t t my t t a b t+ = +        (8) 
where the prediction coefficients ta  and tb  are the linear combination of the first order 
and the second order smooth values, i.e.  

( ) ( )1 22 ,t t ta s s= −         (9) 
( ) ( )( )1 2 .

1
t

t t t
t

b s sϕ
ϕ

= −
−

       (10) 

The basic smoothing formulas with the initials, which are the weighted average of 
workload samples and the first order smooth values respectively, do not change the basic 
characteristics of exponential smoothing, wherein 

( ) ( )1
0

1
1

t
t i

t i
i

s a yϕ −

=

= −∑ ,      (11) 

( ) ( ) ( )2 1
0

1
1 .

t
t i

t i
i

s a sϕ −

=

= −∑       (12) 

Smoothing coefficientα  has a great influence on the smoothing accuracy of prediction. 
The smaller α  is, the stronger ability of smoothing the model has, contrarily the larger 
α  is, the more flexibility the model has to adapt rapid change. We define the prediction 
error as te , ( ) ( )te y t y t= − . We search the optimal α  to minimize the sum of the square 
of prediction error, that is, 

2

1

1min ,MSE
sN

n t
t

ts

e
N

ρ −

=

= ⋅∑      (13) 

where ρ  (0 1)ρ< <  is a weighing factor to weight more on fresh data. With the method 
proposed in [16], we divide α  into 100 aliquots in [0,1] and develop a global search to find 
the the optimal *α . Then we apply the *α  to the prediction. 

4.3 Serving Rate Acquisition 
Each incoming application to cloud enters a first in first out (FIFO) data buffer, which is 

modeled as an M/G/1 queue of each type n  containing unscheduled jobs, with ( )n sQ t  as 

its length in st . Let ( )n mtm  denote the service rate of type n , which remains constant over 
the time frame, then we have the length of queue n  in 1st +  

( ) ( ) ( ) ( )( ){ }1 max 0, .n s n s n s n mQ t Q t R t tt m+ = + −   (14) 

In reality, the length of buffer is finite, and we have max
nQ  as the length of the data buffer. 

According to the Little theorem [17], the relationship between max
nQ  and max

nD  is 

( )max max .n n m nQ t Dλ=        (15) 
Based on Eq. (3), the delay constraints can be converted into queue length constraints, i.e., 
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( )( )maxsupPr .SLA
n s n

t
Q t Q P≥ ≤       (16) 

We apply diffusion approximation to acquire the effective bandwidth [15] of the random 
data arrival process nA  related to QoS requirement. Due to the space limit, the theoretical 
background of diffusion approximation is not covered here. Details of the diffusion 
approximation can be found in [18]. 

( ) ( ) ( )ˆ , 0,n m n m n m nt t tβ λ m β= − <      (17) 

where ( )n mtβ  is drift coefficient [18]. The probability density function of queue length q  
is 

( ) ( ) ( )
( )2

2 2
expn m n m

n n m

t t
p q q

t
β β
λ σ

 
= −   

 
,     (18) 

where ( )2
n mtσ  is the variance of data arrival process nA . The probability that the queue 

length exceeds the maximal length at st  is 

( )( ) ( )
( )

n mmax max
n s n n2

n m

2 t
Pr Q t Q =exp Q .

t
β
s

 
≥   

 
    (19) 

Intuitively, the smaller the violation probability is, the larger the serving rate is required to 
satisfy the SLA demand. We have 

( )( )maxsup .SLA
n s n

t
Pr Q t Q P≥ =       (20) 

Then by solving Eq. (20), we can acquire the proper serving rate 

( ) ( ) ( ) ( )
2

*
max

ˆ log ,
2

n m SLA
n m n m

n

t
t t P

Q
σ

m l= −      (21) 

which guarantees the SLA and lays the foundation of VMP formulation. 

5. Equivalent Analysis of VMP Problem 
So far, we have elaborated the VMP problem which is a facility location problem. It has 

been proved that exact solution of facility location problem is NP-hard [19]. Many 
researches use some heuristic algorithms or alter the problem by relaxation to solve the 
equivalent problem. In this paper, we study the problem by adopting the submodular 
function and matroid theory. We will start with some definitions. Subsequently we prove that 
the VMP problem can be rewritten as the maximization of submodular function subject to 
matroid constraints [20]. 

5.1 Matroids and Submodular function 
Linear independence is a well-known and useful concept. Matroids are structures that 
generalize this concept of independence for general sets. Informally, we need a finite ground 
set E  that matroid is a way to label some subsets of E  as independent. In vector spaces, 
the ground set is a set of vectors, and subsets are called independent of each other if their 
vectors are linearly independent in the usual linear algebraic sense. Formally, we have the 
following definitions which can be found in [21]. 
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Definition 1 (Matroid) : A (finite) ground set E  and a set of subsets of E , 2∅ ≠ ⊆ EI  
are called a set system, notating ( , )E I . The set system ( , )E I  is called a matroid if 
i1)∅∈ I , 
i2) ,∀ ∈ ∈ ⇒ ∈X I Y I Y I (called “down monotone” or “down closed”), 
i3) , ,∀ ∈X Y I  with 1= +X Y , then there exist \x∈X Y  such that { }x∪ ∈Y I . 
  ( , )=M E I  is an example of partition matroid if we have 1 2 l= ∪ ∪E E E E , partitioning 
E  into disjoint sets. Define a set of E  as 

{ }: , 1, ,i ik i l= ⊆ ∪ ≤ = I X E X E          (22) 
where 1, , lk k are fixed parameters. 

Definition 2 (Submodular function): Given a ground setE , a function : 2f R→E  is 
submodular if for any , ∈A B E , we have that: 

( ) ( ) ( ) ( ).f f f f+ ≥ ∪ + ∩A B A B A B     (23) 
An alternative and equivalent definition is: a function : 2f R→E  is a submodular if for 

any ⊆ ⊂A B E , and \e∈E B , we have that: 
( { }) ( ) ( { }) ( )f e f f e f∪ − ≥ ∪ −A A B B ,    (24) 

which means that the incremental value, gain, or cost of e  decreases as the context in 
which e  is considered grows from A to B . 

5.2  Equivalent Analysis of the VMP Problem 
In this part we prove that our objective function and our constraints are independent sets 

of submodular function and matroid respectively. Firstly we define a ground set E . 
Denoting the thi  VM serving the thn  type application hosted in cluster j  by j

nib , the 
ground set is: 

{ , , , }j
ni nb n i j= ∀ ∈ ∈ ∈E N M E       (25) 

The ground set can be partitioned into K  disjoint sets 1 2, , KE E E , where 
{ , , }j

j ni nb n i= ∀ ∈ ∈E N M  means that all the applications are hosted in the cluster j . 
Theorem 1  The constraints (C1) and (C2) in Eq. (5) can be written as partition matroid 

on the ground set defined in (22). 
Proof: In the VMP problem, we want to find the optimal provisioning scheme of the VMs 

serving different types of applications. Each scheme can be expressed by a set ⊆X E , 
called the provision set, for example if j

nib ∈X , the thi  VM serving the thn  type 
application is hosted in j . A set of elements which are hosted in the cluster j  are equal to

jX , that ,j j j V∩ ∀ ∈�X X E  is a subset of the ground set E  associated to the cluster j . 
Therefore, the constraint on the  capacity of clusters can be expressed as ⊆X I  where 

{ : , 1,2, , }.j C j K= ⊆ ∩ ≤ ∀ = I X E X E      (26) 
Comparing I  in Eq. (26) and the definition of partition matriod in Eq. (22), we observe 
that the constraints form a partition matroid with =K l  and jC k=  for 1,2, ,j K=  . The 
partition matroid ( , )=M E I  is called C -uniform matroid. And the same VM cannot be 
located in two clusters, namely 

, ,j k j k∩ =∅ ∀ ∈X X V         (27)  
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Theorem 2  The VMP objective function in Eq. (5) is a submodular function.  
Proof: A provision set ⊆X E , the objective function can be written as 
( ) max ( )

n

ijjn i
f p m

∈
∈ ∈

= −∑ ∑ XN M
X X ,and ( )m X  is a modular function corresponding to j j

j
z γ

∈
∑

V
. 

Let ( )= ( ) ( )f f m−X X X , where 
( )= ( )

n

i
n i

f f
∈ ∈
∑ ∑

N M
X X        (28) 

and 
( )= maxi ijj

f p
∈X

X         (29) 

Through a simple analysis, we know ( )if X  is a submodular function. And according to the 
property of submodular function we can prove that the sum of submodular functions  

( )= ( )
n

i
n i

f f
∈ ∈
∑ ∑

N M
X X  is submodular. Namely, for any , ⊂A B E , 

( ) ( ) ( ) ( )f f f f+ ≥ ∪ + ∩A B A B A B  holds. Moreover, ( )m X  is a modular function with 
( )+ ( )= ( )+ ( )m m m m∪ ∩A B A B A B , which never destroys the inequality. Note of course 

that if ( )m X  is modular, so is ( )m− X . Finally, it is proved that ( )= ( ) ( )f f m−X X X is 
submodular.                                                                                                                               
   

Having proven that the constraints form a matroid and the objective function is 
submodular, 
we can restate the optimization problem as following: 

max ( )

s.t.  , (C3)
, , , (C4)j k

f

j k
⊆

∩ =∅ ∀ ∈

X
X

X I
X X V

     (30) 

where the constraints (C3) and (C4) have the same meaning as (C1) and (C2) in Eq. (5). 

5.3 The VMP Algorithm 

A greedy algorithm is a quite natural way for maximizing a submodular function subject to a 
matroid constraint which starts with an empty set. In each iteration, it adds an element that 
maximally improves the current solution (according to ( )f X ) while maintaining 
independence of the solution. Classical results on approximations of submodular function 
claim that the greedy algorithm achieves 1/2 of the optimal value [22]. If the matroid is 
uniform, the greedy algorithm yields a ( 11 e− )-approximation. What's more, it is optimal in 
the special case of our model [23]. Based on the results obtained by rewriting the VMP 
problem as submodular function subject to a matroid, an adaptive VMP algorithm that 
dynamically adjust virtual machine provisioning pattern with the variation of the amount of 
workload is designed. In addition, as we have neglected the prediction error, our result is not 
optimal but may be close to the optimal value. The global mechanism of VM provision is 
stated in Algorithm 1, where ( )= ( ) ( )f d f d f+ −X X X . 
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Algorithm 1 
Input: the predicted average arrival rate ( )n̂ mtλ , the objective function ( )f X . 

Output: VM provisioning set X . 

Step 1: Initialize , ,j j←∅ ←∅ ∀ ∈X X V . 

Step 2: Calculate the proper serving rate of any application type n  ( )*
n mtm  using Eq. (21). 

Step 3: Acquire the the number of VMs needed nm  using Eq. (4). 

Step 4:  Develop the ground set E  using the information in step 3, let ←D E , j j←D E , j∀ ∈E . 

Step 5: Select arg ( )db max f db
χg ∈= D X , and update the set D  and X , \ bb

χγ←D D . bb
χγ← +X X . 

If Cβ β=X , update \ β←D D D . 
Step 6: Repeat step 5 till =0bb

χγ . 

Step 7: Return X .  

6 Simulation Results 

6.1 Parameter Setting 
The VM provisioning problem for a cloud data center with 40 VM clusters is considered, 

whose capacities are set to 400 uniformly. The benefit is randomly drown from a Gaussian 
distribution as well as the operational cost. The SLA violation probability threshold is set to

310− . The delay bounds are set to 5, 10, 15 respectively. The maximal serving rates of one 
VM are drew from [1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10] with equal probability. If we take 
1 minute as a time slot that the simulation lasts for 1440 consecutive time-slots representing 
a whole day of 24 hours. And the VMs are reallocated every 60 time-slots (hourly). As we 
know, the data traffic in cloud usually has obvious periodicity, e.g., traffic is higher in 
daytime than that in deep night. Three typical kinds of workload have been randomly 
generated based on the method used in [14]. In our experiments, the following daily 
workload has been considered with 1 minute sample time interval: 
• Normal day scenario: It describes the baseline workload where the number of application 
requests changes following the law described in Eq. (31). The pattern of workload described 
by this formula has peaks and valleys, which represent the variation of workload during a 
day. 

           (31) 

where T  denotes the period of application arrival, while ,t t′ ′′are constant.  
• Heavy day scenario: It exhibits a 30% increment in the number of the application requests 
with respect to the baseline workload. 
• Noisy day scenario: It is characterized by the same request workload belonging to the 
heavy day scenario with an additional noise component (we added a white Guassian noise 
with zero mean and standard deviation equal to 15% of the heavy day peak).  
In this way, we increase the system variability in order to prove the accuracy of the 
prediction model and the robustness of our overall scheme in highly variable contexts. 
Simulation parameters are listed in Table 1. 

( ) ( ) ( )2 4sin sin ,t A t t B t t C
T T
π πλ    ′ ′′= − + − +      
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Table 1. Simulation Parameters 

Parameters Values 

Simulation cycle T  1440 time-slots 

Resource allocation cycle 60 time-slots 

Numbers of cluster 40 

Capacity of cluster 400 

Numbers of applications types 8 

The violation probability 310−  

The delay bounds  maxD  5,10,15 

The time parameter t′  144 

The time parameter t′′  84 

 

6.2 Simulation Results 
In this section, the workload adaption performance of the proposed scheme is examined. 

In the following quantitative analysis, we take Fig. 2 as an example to show the variation of 
VMs’ number over the 24 hours for the normal day, heavy day and noisy day scenarios. We 
also plot the variation of workload and the predicted average, and put the three curves in one 
figure. To be intuitive, the three data sets are normalized respectively by the way described  
in Eq. (32)  

min

max min

, 1, 2, ,Norm i
i

S SS i
S S

−
= =

−
                              (32) 

where iS  is any data in the corresponding data sets, minS  is smallest value, maxS  is the 

largest value, Norm
iS is the normalized value. As we normalize the real-time workload, iS  is 

the real-time workload sample, maxS  is the largest sample and minS  the smallest sample 
over the three workload traces. Similarly, we perform the same normalization process for 
both the predicted average and the number of VMs.  

In the scheme, we predict the workload one hour ahead from which we can get the average 
value that determines the amount of VMs running. Since the prediction model considered in 
this paper is able to provide an accurate prediction quality that, in terms of mean square error 
is lower than 10%, the predicted average is corresponding with the real-time workload. We 
also observe that the number of running VMs each hour is highly correlated to the workload 
arriving over that period. It implies that the proposed scheme can adjust the number of 
running VMs according to the variation of the amount of workload in real-time.  
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Fig. 2. Variation of VMs’ number versus time  

 
In order to verify the theoretical analysis about the properties of submodular function in 

Eq. (24), we take the variation of profit in three allocations among the total 24 ones as 
examples shown in Fig. 3. We observe that the profit obtained from starting one VM is 
non-increasing in each allocation. Note that the allocations done hourly are independent with 
each other. What we want to illustrate in this figure is that the trend of each curve is 
descending. Though the three curves have meeting points, it just means that the profit gained 
by increasing the VM is equal. As the incremental value of each element decreases as the set 
size grows, we can use Algorithm 1 to solve the problem. 

 
Fig. 3. The non-increasing profit in three slots 

 
To illustrate scheduling quality of the proposed method, Fig. 4 compares the performance 

of the proposed VMP algorithm with two other algorithms (FCFS algorithm [3], MBFS 
algorithm [10]) in the three workload scenarios mentioned above. In this experiment, we 
divide the day into four time intervals (1-6, 7-12, 13-18, 19-24), and then compare the 
average ratio of profit in each time interval. As we do the normalization in Fig. 2, we also 
normalize the profit gained by scheduling with different algorithms in different workload 
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scenarios. Compare the three subfigures, as the workload increase, the profits gained in the 
heavy day and noisy day are more than that gained in the normal day, which is reasonable. In 
Fig. 4 (a), compared with FCFS and MBFS，the profit gained using the VMP algorithm 
increases by 23.7% and 23.0% respectively. In Fig. 4 (b), compared with FCFS and 
MBFS，the profit gained using the VMP algorithm increases by 21.8% and 11.0%, 
respectively. In Fig. 4 (c), compared with FCFS and MBFS，the profit gained using the 
VMP algorithm increases by 33.2% and  10.3%, respectively. From the simulation results, 
we can conclude that, our proposed VMP algorithm is always more efficient than FCFS and 
MBFS. Because when the requests come, FCFS algorithm allocates the VM avavible, which 
is lack of a selecting and matching process. MBFS prioritizes the requests, constructs a VM 
tree, and selects the appropriate VM ( with the maximal profit in our paper) to execute the 
task. Though MBFS is a priority based algorithm, the request with higher priority may 
occupy the VM which is best fit for the request with lower priority, that may result in a drop 
in the performance. The idea of a VMP is to select best match among the tasks and VMs 
without any priority, which leads to the optimal performance. 

 
Fig. 4. Ratios of profit gained by different methods 

 

 
Fig. 5. QoS guarantee under different delay constraints 
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Fig. 5 provides the QoS guarantee of the proposed method under different delay bound 
constraints. Note that, the squared error in the figure is derived from the equation 

2squared _ error=(p _ simulation-p _ theory) ,                       (33) 
where p_theory is the given value of the violation probability and p_simulation is obtained 
from the simulation when the jobs are executed at the rate derived from DA model utilizing 
p_theory. Since DA model is a statistical model with little error, which is acceptable as long 
as the error is not sufficient to affect the system performance. In the simulation, we assume 
the violation probability of exceeding the delay bound is 310− . And delay bounds are set to 
be 5, 10, 15 respectively. The order of magnitude of the squared error is 710− , which means 
the QoS requirement can be satisfied under different delay constraints.   

7. Conclusions 
In this paper, our VM provisioning method applies ES prediction and statistical model to 

infer the future resource consumption patterns of VMs. Based on the forecasting results, the 
optimal VMP pattern are estimated by solving the VMP problem and the VMs are efficiently 
allocated accordingly. Especially, the optimization problem can be expressed as a 
submodular function under matroid constraints, which can help us to solve the VMP problem 
on the basis of a greedy algorithm. Simulation results verify that the proposed scheme has 
efficiently improved the profit of the cloud provider. 

References 
[1] C. Wang, W. Hung and C. Yang, “A prediction based energy conserving resources allocation 

scheme for cloud computing,” in proc. of IEEE GrC, pp. 320-324, Oct. 2014. 
Article (CrossRef Link) 

[2] Li, C. Wu and Z. Li, “Virtual machine trading in a federation of clouds: individual profit and 
social welfare maximization,” IEEE/ACM Transactions on Networking, 2014. 
Article (CrossRef Link) 

[3] I. Moschakis and H. Karatza, “Evaluation of gang scheduling performance and cost in a cloud 
computing system,” Journal of Supercomputing, vol. 59, pp. 975-992, 2012. 
Article (CrossRef Link) 

[4] D. Villegas, A. Antoniou, S. M. Sadjadi and A. Iosup, “An analysis of provisioning and 
allocation policies for infrastructure-as-a-service clouds,” 12th IEEE/ACM International 
Symposium on cluster, cloud and grid computing, pp. 612-619, 2012. Article (CrossRef Link) 

[5] J. Ru and J. Keung, “An empirical investigation on the simulation of priority and shortest job 
first scheduling for cloud-based software systems,” 22nd Australian Conference on Software 
Engineering, pp. 78-87, 2013. Article (CrossRef Link) 

[6] S. Behzad, R. Fotohi and M. Effatparvar, “Queue based job scheduling algorithm for cloud 
computing,” International Research Journal of Applied and Basic Sciences, Vol. 4(11), pp. 
3785-3790, 2011. Article (CrossRef Link) 

[7] S. Behzad, R. Fotohi and M. Effatparvar, “An improved Max-Min task-scheduling algorithm for 
elastic cloud,” in Proc. of IEEE IS3C, pp. 340 - 343, 2014. Article (CrossRef Link) 

[8] N. Hung, N. Thoai and N. Son, “Performance constraint and power-aware allocation for user 
requests in virtual computing lab,” Journal of Science and Technology, Special on International 
Conference on Advanced Computing and Applications(Vietnam), vol. 49, no. 4A, pp. 383-392, 
2011. Article (CrossRef Link) 

[9] A. Beloglazov, J. Abawajy and R. Buyya, “Energy-aware resource allocation heuristics for 
efficient management of data centers for cloud computing,” Future Generation Computer 
Systems, vol. 28, no. 5, pp. 755-768, 2012. Article (CrossRef Link) 

http://dx.doi.org/10.1109/GRC.2014.6982857
http://dx.doi.org/10.1109/TNET.2015.2435015
http://dx.doi.org/10.1007/s11227-010-0481-4
http://dx.doi.org/10.1109/ccgrid.2012.46
http://dx.doi.org/10.1109/aswec.2013.19
http://www.irjabs.com/files_site/paperlist/r_1369_130914102103.pdf
http://dx.doi.org/10.1109/IS3C.2014.95
http://www.techrepublic.com/resource-library/whitepapers/performance-constraint-and-power-aware-allocation-for-user-requests-in-virtual-computing-lab/
http://dx.doi.org/10.1016/j.future.2011.04.017


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 12, December 2015               4965 

[10] R. Yadav and V. Kushwaha, “An energy preserving and fault tolerant task scheduler in cloud 
computing,” in Proc. of IEEE ICAETR, pp.1-5, 2014. Article (CrossRef Link) 

[11] S. Shin, Y. Kim and S. Lee, “Deadline-guaranteed scheduling algorithm with improved resource 
utilization for cloud computing,” in Proc. of IEEE CCNC, pp.814-819, 2015. 
Article (CrossRef Link) 

[12] M. Adnan, R. Sugihara. Hung and R. Gupata, “Energy efficient geographical load balancing via 
dynamic deferral of workload,” in Proc. of IEEE CLOUD, pp. 188-195, June 2012. 
Article (CrossRef Link) 

[13] Z. Huang and D. H. K. Tsang, “SLA guaranteed virtual machine consolidation for computing 
clouds,” in Proc. of IEEE ICC, pp. 1314-1319, June 2012. Article (CrossRef Link) 

[14] D. Ardagna, S. Casolari and B. Panicucci, “Flexible distributed capacity allocation and load 
redirect algorithms for cloud systems,” in Proc. of IEEE CLOUD, pp. 163-170, July 2011. 
Article (CrossRef Link) 

[15] Q. Du and X. Zhang, “Statistical QoS provisionings for wireless unicast/multicast of multi-layer 
video streams,” IEEE J. Sel. Areas Commun., vol. 28, no. 3, pp. 420-433, April 2010. 
Article (CrossRef Link) 

[16] P. Ji, D. Xiong and P. Wang, “A study on exponential smoothing model for load forecasting,” 
APPEEC, pp. 1-4, March 2012. Article (CrossRef Link) 

[17] D. Bertsekas and R. Gallager, “Data Networks,” Prentice-Hall, 1987. Article (CrossRef Link) 
[18] H. Kobayashi, “Application of the Diffusion approximation to queueing networks I: equilibrium 

queue distributions,” Journal of the Association for Computing Machinery, vol. 21, no. 2, pp. 
316-328, April 1974. Article (CrossRef Link) 

[19] N. Megiddo, A. Tamir, “On the complexity of locating linear facilities in the plane,” Operations 
Research Letters, vol. 1, no. 51, pp. 194–197, 1982. Article (CrossRef Link) 

[20] N. Golrezaei, K. Shanmugam and A. Dimakis, “Femto caching: wireless video content delivery 
through distributed caching helpers,” in Proc. of IEEE INFOCOM, pp. 1107-1115, March 2012. 
Article (CrossRef Link) 

[21] S. Fujishige, “Submodular Functions and Optimization,” 2005. Article (CrossRef Link) 
[22] G. Calinescu, C. Chekuri and M. Pal, “Maximizing a monotone submodular function subject to a 

matroid xonstraint,” SIAM Journal on Computing, vol. 40, no. 6, pp. 1740-1766, Dec. 2010. 
Article (CrossRef Link) 

[23] G. Nemhauser, L. Wholsey and M. Fisher, “An analysis of approximations for maximizing 
submodular set functions,” Mathematical Programming, vol. 14, no. 1, pp. 265-294, 1978. 
Article (CrossRef Link) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://dx.doi.org/10.1109/icaetr.2014.7012877
http://dx.doi.org/10.1109/ccnc.2015.7158082
http://dx.doi.org/10.1109/CLOUD.2012.45
http://dx.doi.org/10.1109/ICC.2012.6363970
http://dx.doi.org/10.1109/CLOUD.2011.32
http://dx.doi.org/10.1109/JSAC.2010.100413
http://dx.doi.org/10.1109/APPEEC.2012.6307555
http://web.mit.edu/dimitrib/www/datanets.html
http://dx.doi.org/10.1145/321812.321827
http://dx.doi.org/10.1016/0167-6377(82)90039-6
https://books.google.com.hk/books
http://dx.doi.org/10.1137/080733991
http://dx.doi.org/10.1007/BF01588971


4966          Li et al.: Profit-Maximizing Virtual Machine Provisioning Based on Workload Prediction in Computing Cloud 

 

Qing Li received the B.S. degree in Communication Engineering from Hebei 
University, China in 2014.Now she is currently working towards the M. S. degree in 
Communication and Information Systems at Xidian University. Her research interests in 
resource scheduling in cloud computing environment, information fusion and autonomic 
communication. 

 

Qinghai Yang received his B.S. degree in Communication Engineering from Shandong 
University of Technology, China in 1998, M.S. degree in Information and Communication 
Systems from Xidian University, China in 2001, and Ph. D. in Communication Engineering from 
Inha University, Korea in 2007 with university-president award. From 2007 to 2008, he was a 
research fellow at UWB-ITRC, Korea. Since 2008, he is with Xidian University, China . His 
current research interest lies in the fields of autonomic communication, content delivery networks 
and LTE-A techniques. 
 

 

Qingsu He is a member of Chinese Society for Electrical Engineering, the senior 
engineer of power system automation. He is with State Grid Information & 
Telecommunication Group Co., Ltd, serving on its subsidiary development planning 
department director and general manager of business innovation. His research focus lies 
in the area of power system automation, new technology and product development and 
application of promotion, intelligent information communication technology. He has 
published over 12 technical papers, more than 30 patents, 10 software copyrights and as 
well the book of IOT and Smart Grid.  

 

Kyung Sup Kwak received the B.S. degree from the Inha University, Inchon, Korea in 
1977, and the M.S. degree from the University of Southern California in 1981 and the 
Ph.D. degree from the University of California at San Diego in 1988, under the Inha 
University Fellowship and the Korea Electric Association Abroad Scholarship Grants, 
respectively. From 1988 to 1989 he was a Member of Technical Staff at Hughes 
Network Systems, San Diego, California. From 1989 to 1990 he was with the IBM 
Network Analysis Center at Research Triangle Park, North Carolina. Since then he has 
been with the School of Information and Communication, Inha University, Korea as a 
professor. He had been the chairman of the School of Electrical and Computer 
Engineering from 1999 to 2000 and the dean of the Graduate School of Information 
Technology and Telecommunications from 2001 to 2002 at the Inha University, Inchon, 
Korea. He is the current directors of Advanced IT Research Center of Inha University, 
and UWB Wireless Communications Research Center, a key government IT research 
center, Korea. Since 1994 he had been serving as a member of Board of Directors, and 
during the term of 2002-2000 year, he had been the vice president for Korean Institute 
of Communication Sciences (KICS). He has been the KISC’s president of 2006 year 
term. His research interests include multiple access communication systems, mobile 
communication systems, UWB radio systems and ad-hoc networks, high-performance 
wireless Internet. Mr. Kwak is members of IEEE, IEICE, KICS and KIEE. 

 


