• 제목/요약/키워드: virtual force

검색결과 481건 처리시간 0.04초

원추형 코일스프링의 강성에 대한 연구 (A Study on the Stiffness of Frustum-shaped Coil Spring)

  • 김진훈;이수종;이경호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 추계학술대회 논문집(Proceeding of the KOSME 2001 Autumn Annual Meeting)
    • /
    • pp.21-27
    • /
    • 2001
  • Springs are widely utilized in machine element. To find out stiffness of frustum-shaped coil spring, the space beam theory using the finite element method is adopted in this paper In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. To find out load vector of coil spring subjected to distributed compression, principle of virtual work is adapted The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculate the another increments of nodal displacements, that is, the step by step method is used in this paper. The results of the finite element method are fairly well agreed with those of various experiments. Using MATLAB program developed in this paper, spring constants and stresses can be predicted by input of few factors.

  • PDF

물고기 로봇의 기하학적 경로 추종 (Geometric Path Tracking for a Fish Robot)

  • 박진현;최영규
    • 한국정보통신학회논문지
    • /
    • 제18권4호
    • /
    • pp.906-912
    • /
    • 2014
  • 물고기 로봇 연구는 몸체 및 꼬리 관절 궤적의 크기나 주파수의 크기에 따른 로봇의 추력 비교 또는 꼬리 관절 궤적을 적절한 함수로 선정하여 물고기 로봇의 빠른 회전 등과 관련된 연구가 주를 이루고 있다. 본 연구에서는 물고기 로봇이 추력을 받아 앞으로 유영할 경우, 로봇의 몸체 및 꼬리 관절이 사인파와 같이 좌, 우로 요동치며 움직이므로 피드백 제어를 행하기 어렵다. 따라서 물고기 로봇의 경로에 기초한 가상의 위치를 검출하고, 검출된 위치를 사용하여 주어진 경로 위의 예견 점(look-ahead point)을 기준으로 방향 오차를 정의하여 물고기 로봇이 경로를 추종하도록 제어기를 설계하였다. 모의실험 결과 제안된 방법의 유용성을 확인할 수 있었다.

Hydrocyclone을 이용한 호소 퇴적물의 분급특성 (Classification of Lake Sediment by Hydrocyclone)

  • 노성혁;조영민;오종민
    • 한국수자원학회논문집
    • /
    • 제34권3호
    • /
    • pp.265-273
    • /
    • 2001
  • 본 연구에서는 원심력을 이용한 하이드로싸이클론을 준설된 호소 퇴적물의 처리 공정에 적용하는 실험을 수행하였다. 준설된 퇴적물의 안정화 및 위생적 처리를 위해서는 경우에 따라 탈수 및 분급공정이 필요하다. 본 연구에서는 이러한 공정에 하이드로싸이클론을 적용하였으며, 실온에서 실제 호소 퇴적물과 폐 석탄회를 이용하여 분리효율을 실험하였다. 본 연구 결과 하부배출구의 크기는 한계분리입경(d(sub)50)에 큰 영향을 미치는 것을 알 수 있었고, 비중이 큰 입자일수록 좀 더 분리가 효과적으로 일어나는 것을 알 수 있었다.

  • PDF

Wearable Robot Arm의 제작 및 제어 (Design and Control of a Wearable Robot)

  • 정연구;김윤경;김경환;박종오
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.277-282
    • /
    • 2001
  • As human-friendly robot techniques improve, the concept of the wearability of robotic arms becomes important. A master arm that detects human arm motion and provides virtual forces to the operator is an embodied concept of a wearable robotic arm. In this study, we design a 7 DOF wearable robotic arm with high joint torques. An operator wearing this robotic arm can move around freely because this robotic arm was designed to have its fixed point at the shoulder part of the operator. The proposed robotic arm uses parallel mechanisms at the shoulder part and the wrist part on the model of the human muscular structure of an upper limb. To reduce the computational load in solving the forward kinematics and to prevent singularity motions of the parallel mechanism, yawing motion of the parallel mechanisms was separated using a slip ling mechanism. The total weight of the proposed robotic arm is about 4 kg. An experimental result of force tracking test for the pneumatic control system and an application example for VR robot are described to show the validity of the robot.

  • PDF

The effect of in-plane deformations on the nonlinear dynamic response of laminated plates

  • Kazanci, Zafer;Turkmen, Halit S.
    • Structural Engineering and Mechanics
    • /
    • 제42권4호
    • /
    • pp.589-608
    • /
    • 2012
  • In this study, the effect of in-plane deformations on the dynamic behavior of laminated plates is investigated. For this purpose, the displacement-time and strain-time histories obtained from the large deflection analysis of laminated plates are compared for the cases with and without including in-plane deformations. For the first one, in-plane stiffness and inertia effects are considered when formulating the dynamic response of the laminated composite plate subjected to the blast loading. Then, the problem is solved without considering the in-plane deformations. The geometric nonlinearity effects are taken into account by using the von Karman large deflection theory of thin plates and transverse shear stresses are ignored for both cases. The equations of motion for the plate are derived by the use of the virtual work principle. Approximate solution functions are assumed for the space domain and substituted into the equations of motion. Then, the Galerkin method is used to obtain the nonlinear algebraic differential equations in the time domain. The effects of the magnitude of the blast load, the thickness of the plate and boundary conditions on the in-plane deformations are investigated.

A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

  • Oh, Jae-Won;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Cho, Hui-Je;Kim, Hyung-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.652-669
    • /
    • 2014
  • This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI) method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics.

디지털 공간에 나타난 선의 유기체적 확장성에 관한 연구 - NOX 디지털 공간을 중심으로 - (A Study on Organistic Line Extension on Digital Space - Focus on NOX digital space -)

  • 유미연;윤재은
    • 한국실내디자인학회논문집
    • /
    • 제17권3호
    • /
    • pp.148-155
    • /
    • 2008
  • The following research focuses on the formation method of digital space by organistic line extension among various digital formation methods. The paper reflects on the meaning and concept of today's digitalism which enables the application of complex organistic system on space through advanced technology. It also explores the concept of a line in topology which differs in assumptive meaning from traditional Euclidian geometry. The findings of the research are that first, digital space is not optimized, but is a tentative formation in process. A digital space encompasses characteristics such as infinity, possibility, potential, asymmetry, and the force of virtuality such characteristics are expressed through a moving surface constantly changing with direction. Second, a digital space formed by line extension is inseparable and durable since no measurement or dimension is predetermined. Furthermore, its sense of direction and flexibility gives it a feeling of a living organism. Third, a Euclidian methodology called 'NURBS' is being developed to express such a dynamic digital space; this is reflected through three elements, control point, weights, and knots to effectively reflect the characteristics of virtuality. The opportunities of digital space are infinite, and the possibilities of formation methods likewise vast.

자수기에 맞는 LPM의 설계와 구동 특성에 관한 연구 (The Study on Design and Dynamic Operation Characteristics of Linear Pulse I for Embroidery Machine)

  • 박창순;권태근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.91-93
    • /
    • 2001
  • Linear pulse Motors(LPM) are widely used in fields where smooth linear motion is required, and their position accuracy is higher than other motors. Hybrid linear pulse motors(HLPM) are regarded as an excellent solution to positioning problems that require high accuracy, rapid acceleration and high-speed. The LPM has low mechanical complexity, high reliability, precise open-loop operation and low inertia etc. In many application areas such as factory automation speed positioning, computer peripherals and numerically controlled machine tools, LPM can be used. This motor drive system is especially suitable for machine tools the high position accuracy and repeatability. This paper describes about that need of the embroider machine, we want to design position-scanning device for the embroidery machine. At first, to be analysed characteristics of the machine and next designed the LPM, we used the field analysis program. The finite element method(FEM) program tool is employed for calculation the force. The reluctance models will be used the magnetic permeance of air gap by static-conditions. The forces between forcer and platen have been calculated using the virtual work method. And we used the simulink to know the dynamic characteristics of LPM.

  • PDF

궤도시스템의 궤도링크와 연약지반과의 상호 접촉연구 (Track System Interactions Between the Track Link and the Ground)

  • 류한식;장정선;최진환;배대성
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1711-1718
    • /
    • 2004
  • When the tracked vehicle is running on various types of terrain, the physical properties of the interacting ground can be different. In this paper, the interactions between track link and soft soil ground are investigated using static sinkage theory of soil ground. Grouser surfaces of a track link and triangular patches of ground are implemented for contact detection algorithm. Contact force at each segment area of a track link is computed respectively by using virtual work concept. Bekker's static soil sinkage model is applied for pressure-sinkage relationship and shear stress-shear displacement relationship proposed by Janosi and Hanamoto is used for tangential shear forces. The repetitive normal loads of a terrain are considered because a terrain element is subject to the repetitive loading of the roadwheels of a tracked vehicle. The methods how to apply Bekker's soil theory for multibody track system are proposed in this investigation and demonstrated numerically by high mobility tracked vehicle.

가상 해저터널 TBM공법 적용 시 세그먼트 단면설계 (TBM segment lining section design of hypothetical subsea tunnels)

  • 최정혁;유충식
    • 한국터널지하공간학회 논문집
    • /
    • 제17권1호
    • /
    • pp.49-63
    • /
    • 2015
  • 본 논문에서는 가상 해저터널의 세그먼트 라이닝의 부재력 평가하여 수심별 세그먼트 최적 두께 산정 및 하중식에 따른 부재력 변화에 관한 내용을 다루었다. 가상 해저터널의 세그먼트 부재력을 평가하기 위해 먼저 다양한 설계 조건을 도출하고 이에 대해 2-Ring Beam 모델을 이용한 구조해석을 수행하여 부재력을 산출하였다. 산출한 부재력을 이용하여 예비 철근 배근을 통해 단면검토를 수행하여 각각의 지층별로 철근 배근을 조절하여 최적 두께를 산정하였다. 검토 결과를 토대로 시공조건에 따른 부재력 변화 경향을 검토하였으며 아울러 다양한 시공조건에 따른 최적 라이닝 단면을 제시하였다.