• Title/Summary/Keyword: virtual 3D plastic surgery software

Search Result 5, Processing Time 0.023 seconds

Paradigm Shift in Rhinoplasty with Virtual 3D Surgery Software and 3D Printing Technology

  • Man Koon Suh;Joo-Yun Won;Jung-Hwan Baek
    • Archives of Plastic Surgery
    • /
    • v.51 no.3
    • /
    • pp.268-274
    • /
    • 2024
  • Most Asians have a nose with a short columella and a low dorsum; augmentation rhinoplasty using implants is commonly performed in Asian countries to achieve a taller and more well-defined nasal dorsum. However, the current knowledge is insufficient to fully understand the various subjective desires of patients, reflect on them during surgery, or to objectively analyze the results after surgery. Advances in digital imaging technologies, such as 3D printing and 3D scanning, have transformed the medical system from hospital-centric to patient-centric throughout the medical field. In this study, we applied these techniques to rhinoplasty. First, we used virtual 3D plastic surgery software to enable surgical planning through objectified numerical calculations based on the visualized data of the patient's medical images rather than simple virtual plastic surgery. Second, the customized nasal implant was manufactured by reflecting the patient's anatomical shape and virtual 3D plastic surgery data. Taken together, we describe the surgical results of applying these rhinoplasty solutions in four patients. Our experience indicates that high fidelity and patient satisfaction can be achieved by applying these techniques.

Virtual Reality and 3D Printing for Craniopagus Surgery

  • Kim, Gayoung;Shim, Eungjune;Mohammed, Hussein;Kim, Youngjun;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.4 no.1
    • /
    • pp.9-12
    • /
    • 2017
  • Purpose Surgery for separating craniopagus twins involves many critical issues owing to complex anatomical features. We demonstrate a 3D printed model and virtual reality (VR) technologies that could provide valuable benefits for surgical planning and simulation, which would improve the visualization and perception during craniopagus surgery. Material & Methods We printed a 3D model extracted from CT images of craniopagus patients using segmentation software developed in-house. Then, we imported the 3D model to create the VR environment using 3D simulation software (Unity, Unity Technologies, CA). We utilized the HTC Vive (HTC & Valve Corp) head-mount-display for the VR simulation. Results We obtained the 3D printed model of craniopagus patients and imported the model to a VR environment. Manipulating the model in VR was possible, and the 3D model in the VR environment enhanced the application of user-friendly 3D modeling in surgery for craniopagus twins. Conclusion The use of the 3D printed model and VR has helped understand complicated anatomical structures of craniopagus patients and has made communicating with other medical surgeons in the field much easier. Further, interacting with the 3D model is possible in VR, which enhances the understanding of the craniopagus surgery as well as the success rate of separation surgery while providing useful information on diagnosing and surgery planning.

Total joint reconstruction using computer-assisted surgery with stock prostheses for a patient with bilateral TMJ ankylosis

  • Rhee, Seung-Hyun;Baek, Seung-Hak;Park, Sang-Hun;Kim, Jong-Cheol;Jeong, Chun-Gi;Choi, Jin-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.41.1-41.6
    • /
    • 2019
  • Backgrounds: The purpose of this study is to discuss the total joint reconstruction surgery for a patient with recurrent ankylosis in bilateral temporomandibular joints (TMJs) using three-dimensional (3D) virtual surgical planning, computer-aided manufacturing (CAD/CAM)-fabricated surgical guides, and stock TMJ prostheses. Case presentation: A 66-year-old female patient, who had a history of multiple TMJ surgeries, complained of severe difficulty in eating and trismus. The 3D virtual surgery was performed with a virtual surgery software (FACEGIDE, MegaGen implant, Daegu, South Korea). After confirmation of the location of the upper margin for resection of the root of the zygoma and the lower margin for resection of the ankylosed condyle, and the position of the fossa and condyle components of stock TMJ prosthesis (Biomet, Jacksonville, FL, USA), the surgical guides were fabricated with CAD/CAM technology. Under general anesthesia, osteotomy and placement of the stock TMJ prosthesis (Biomet) were carried out according to the surgical planning. At 2 months after the operation, the patient was able to open her mouth up to 30 mm without complication. Conclusion: For a patient who has recurrent ankylosis in bilateral TMJs, total joint reconstruction surgery using 3D virtual surgical planning, CAD/CAM-fabricated surgical guides, and stock TMJ prostheses may be an effective surgical treatment option.

Implant Fixture Installation in the Posterior Maxilla Using a Tooth-supported Surgical Template Based on Computer Assisted Treatment Planning (컴퓨터 보조 기반 치아 지지 서지컬 템프레이트를 이용한 상악구치부 임플란트 식립)

  • Kim, Soung Min;Kim, Myung Joo;Lee, Jee Ho;Myoung, Hoon;Lee, Jong Ho;Kim, Myung Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.6
    • /
    • pp.381-389
    • /
    • 2013
  • Two patients with partial edentulous maxilla were scheduled to undergo installation of implant fixtures using a tooth-supported surgical template based on computer assisted treatment planning. After 3-dimensional (3D) computed tomographic scanning was transferred to the OnDemand3D (Cybermed Co., Seoul, Korea) software program for virtual planning, fixtures of MK III Groovy RP implant of the Br${\aa}$nemark System (Nobel Biocare AB Co., G$\ddot{o}$teborg, Sweden) was installed using the In2Guide (CyberMed Co., Seoul, Korea) tooth-supported surgical template with a Quick Guide Kit (Osstem Implant Co., Seoul, Korea) system in the posterior maxilla of each patient. Sinus floor elevation with a xenogenic bone graft procedure was also performed simultaneously in one patient. Fixture installations were completed successfully without complications, such as sinus mucosa perforation, bony bleedings, fenestrations, or others. During the last two-year follow-up period after prosthetics delivery, each implant was found to be fine with no other minor complications. The entire procedures are reported and the literatures on use of tooth-supported surgical template was reviewed.

Implant Fixture Installation in the Anterior Mandible by Use of a Mucosa Supported Surgical Template Based on Computer Assisted Treatment Planning (컴퓨터보조 기반 점막지지 서지컬템프레이트를 이용한 하악전치부 임플란트 식립)

  • Lee, Jee-Ho;Kim, Soung-Min;Kim, Myung-Joo;Park, Jung-Min;Seo, Mi-Hyun;Myoung, Hoon;Lee, Jong-Ho;Kim, Myung-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.2
    • /
    • pp.158-165
    • /
    • 2011
  • A 73-year-old Korean female patient with a fully edentulous mandible was planned to have five implant fixtures installed in the anterior mandible for the fixed prosthesis. After 3-dimensional (3D) computed tomographic scanning was transferred to OnDemand3D$^{(R)}$ (Cybermed Co., Seoul, Korea) software program for the virtual planning, five fixtures of MK III Groovy RP implants of Branemark System$^{(R)}$ (Nobel Biocare AB Co., Goteborg, Sweden) were installed in the anterior mandible between both mental foramens using In2Guide$^{(R)}$ (CyberMed Co., Seoul, Korea) mucosa-supported surgical template with Quick Guide Kit$^{(R)}$ (Osstem Implant Co., Seoul, Korea) systems. Fixture installations were completed successfully without any complications, such as mental nerve injury, bony bleedings, fenestrations and other unexpected events. Postoperative computed tomographic scans were aligned and fused to the planned implant, then angular and linear deviations were compared with the planned virtual implants. The mean angular deviation between the planned and actual implant axes was $3.42{\pm}1.336^{\circ}$. The mean distance between the planned and actual implant at the neck area was $0.544{\pm}0.290$ mm horizontally and $0.118{\pm}0.079$ mm vertically. The average distance between the planned and actual implant at the apex area was $1.166{\pm}0.566$ mm horizontally and $0.14{\pm}0.091$ mm vertically. These results could be considered more precise and accurate than previous reports, and even our recent results. The entire procedures of this case are reported and reviewed.