• Title/Summary/Keyword: viral inactivation

Search Result 32, Processing Time 0.034 seconds

Recent (2010-2019) foodborne outbreaks caused by viruses in the Republic of Korea along with their detection and inactivation methods (바이러스에 의한 최근(2010-2019) 국내 식중독 사고와 검출법 및 제어법에 대한 동향 조사)

  • Kwon, Seung-Wook;Kim, Sang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • In this review, recent foodborne outbreaks caused by viruses in the Republic of Korea (2010-2019) were analyzed. The human norovirus was found to be the major foodborne virus causing an average of 94.9% of the viral outbreaks. Reverse-transcription polymerase chain reaction (PCR) with electrophoresis has been widely used to detect viruses, but several rapid detection methods, including real-time PCR, multiplex PCR, and quantum dot assay, have also been suggested. For norovirus inactivation studies, surrogates such as murine norovirus and feline calicivirus have been widely used to identify the reduction rate owing to the limitations in laboratory cultivation. Conversely, direct cell infection studies have been conducted for other foodborne viruses such as adenovirus, astrovirus, rotavirus, and hepatitis A or E virus. Moreover, virucidal mechanisms using various physical and chemical treatments have been revealed. These recent studies suggest that rapid in situ detection and effective control are valuable for ensuring food safety against viral infections.

Inactivation of Infectious Microorganisms by Disinfection and Sterilization Processes for Human Amniotic Membrane Grafts (이식을 위한 사람 양막의 소독 및 멸균공정에 의한 감염성 위해인자 불활화 효과)

  • Bae, Jung-Eun;Kim, Chan-Kyung;Kim, In-Seop
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.346-353
    • /
    • 2009
  • Viral, bacterial, and fungal infection can be transmitted from donor to recipient via transplantation of human amniotic membrane. Therefore human amniotic membrane for transplantation should be disinfected and sterilized before use. The purpose of this study was to examine the efficacy of the disinfection process and sterilization processes used at human tissue bank in the inactivation of viruses, bacteria, and fungi. A variety of experimental model viruses, bacteria, and fungus for human pathogens, including the human immunodeficiency virus type 1 (HIV-1), bovine herpes virus (BHV), bovine viral diarrhoea virus (BVDV), hepatitis A virus (HAV), porcine parvovirus (PPV), Escherichia coli, Bacillus subtilis, and Candida albicans were all selected for this study. Enveloped viruses such as HIV-1, BHV, and BVDV were effectively inactivated to undetectable levels by 70% ethanol treatment, gamma irradiation process, and ethylene oxide (EO) gas sterilization process. Also non-enveloped viruses such as HAV and PPV were effectively inactivated to undetectable levels by gamma irradiation and EO gas treatment. However HAV and PPV showed high resistance to 70% ethanol treatment. E. coli and C. albicans were effectively inactivated to undetectable levels by 70% ethanol treatment, gamma irradiation process, and EO gas treatment. Also B. subtilis was effectively inactivated to undetectable levels by gamma irradiation process and EO gas treatment. However it showed high resistance to 70% ethanol treatment.

In vitro Antiviral Activities of Korean Marine Algae Extracts against Fish Pathogenic Infectious Hematopoietic Necrosis Virus and Infectious Pancreatic Necrosis Virus

  • Kang, So-Young;Kim, Seok-Ryel;Oh, Myung-Joo
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1074-1078
    • /
    • 2008
  • To investigate the antiviral activity of marine algae against fish pathogenic viruses, which are often the causes of viral disease in aquaculture, the 80% methanolic extracts of 21 species collected from the coast of Korea were screened for their in vitro antiviral activities on infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV), using a flounder spleen (FSP) cell-line. Among them, Monostroma nitidum (10 ${\mu}g/mL$) exhibited the strongest inactivation on IHNV, showing a 2 log reduced virus titre as compared to the control in the determination of direct virucidal activity. In addition, Polysiphonia morrowii (100 ${\mu}g/mL$) remarkably reduced the virus titres of treated cells by 2-2.5 log, for both IHNV and IPNV, in the determination of cellular protective activity, implying the existence of substances that may modulate innate host defense mechanisms against viral infections. These results reveal that some marine algae could be promising candidates as sources of antiviral agents or as health-promoting feeds for aquaculture.

Inactivation by Chemical Disinfectants in vitro against Tobacco Mosaic Virus (화학적 제어제에 의한 담배모자이크 바이러스의 불활성화)

  • Choi, C.W
    • The Journal of Natural Sciences
    • /
    • v.10 no.1
    • /
    • pp.17-21
    • /
    • 1998
  • Numerous chemicals were tasted to show antiviral activity in vitro against tobacco mosaic virus (TMV). With a brief exposure of TMV to 1 N HCl or 1-0.1 N NaOH, Virions and their encapsidated RNAs were degraded completely and rapidly. When TMV was exposed to 0.1 N HCl, the hydrolysis of viral capsid in 5 min after treatment was observed in the 1% agarose gel. Virions and their encapsidated RNAs were not degraded by 0.01N HCl of 0.01N NaOH. These characteristics indicate that a short exposure to optimal concentration of acid or base is of practical value in eliminating infectious virus. The treatment of 50% isopropanol or UV light did not damage in viral integrity or their encapsidated RNAs. Disinfection of the agricultural tools and laboratory equipments using appropriate disinfectants is necessary to prevent cross contamination if farm and laboratory.

  • PDF

Comparative Inactivation of Hepatitis A Virus and Murine Encephalomyocarditis Virus to Various Inactivation Processes (바이러스 불활화 공정에 대한 Hepatitis A Virus와 Murine Encephalomyocarditis Virus의 민감도 비교)

  • Kim, In-Seop
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.242-247
    • /
    • 2003
  • Murine encephalomyocarditis virus (EMCV) has been used as a surrogate for hepatitis A virus (HAV) for the validation of virus removal and/or inactivation during the manufacturing process of biopharmaceuticals. Recently international regulation for the validation of HAV safety has been reinforced because of the reported cases of HAV transmission to hemophiliac patients who had received ntihemophilic factors prepared from human plasma. The purpose of the present study was to compare the resistance of HAV and EMCV to various viral inactivation processes and then to standardize the HAV validation method. HAV was more resistant than EMCV to pasteurization (60oC heat treatment for 10 hr), low pH incubation (pH 3.9 at 25oC for 14 days), 0.1 M NaOH treatment, and lyophilization. EMCV was completely inactivated to undetectable levels within 2 hr of pasteurization, however, HAV was completely inactivated to undetectable levels after 5 hr treatment. EMCV was completely inactivated to undetectable levels within 15 min of 0.1 M NaOH treatment, however, residual infectivity of HAV still remained even after 120 min of treatment. The log reduction factors achieved during low pH incubation were 1.63 for HAV and 3.84 for EMCV. Also the log reduction factors achieved during a lyophilization process of antihemophilic factor VIII were 1.21 for HAV and 4.57 for EMCV. These results indicate that HAV rather than EMCV should be used for the virus validation study and the validation results obtained using EMCV should be precisely reviewed.

Virus Inactivation during the Manufacture of a Collagen Type I from Bovine Hides (소 가죽 유래 Type I Collagen 생산 공정에서 바이러스 불활화)

  • Bae, Jung Eun;Kim, Chan Kyung;Kim, Sungpo;Yang, Eun Kyung;Kim, In Seop
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.314-318
    • /
    • 2012
  • Most types of collagen used for biomedical applications, such as cell therapy and tissue engineering, are derived from animal tissues. Therefore, special precautions must be taken during the production of these proteins in order to assure against the possibility of the products transmitting infectious diseases to the recipients. The ability to remove and/or inactivate known and potential viral contaminants during the manufacturing process is an ever-increasingly important parameter in assessing the safety of biomedical products. The purpose of this study was to evaluate the efficacies of the 70% ethanol treatment and pepsin treatment at pH 2.0 for the inactivation of bovine viruses during the manufacture of collagen type I from bovine hides. A variety of experimental model viruses for bovine viruses including bovine herpes virus (BHV), bovine viral diarrhea virus (BVDV), bovine parainfluenza 3 virus (BPIV-3), and bovine parvovirus (BPV), were chosen for the evaluation of viral inactivation efficacy. BHV, BVDV, BPIV-3, and BPV were effectively inactivated to undetectable levels within 1 h of 70% ethanol treatment for 24 h, with log reduction factors of ${\geq}5.58$, ${\geq}5.32$, ${\geq}5.11$, and ${\geq}3.42$, respectively. BHV, BVDV, BPIV-3, and BPV were also effectively inactivated to undetectable levels within 5 days of pepsin treatment for 14 days, with the log reduction factors of ${\geq}7.08$, ${\geq}6.60$, ${\geq}5.60$, and ${\geq}3.59$, respectively. The cumulative virus reduction factors of BHV, BVDV, BPIV-3, and BPV were ${\geq}12.66$, ${\geq}11.92$, ${\geq}10.71$, and ${\geq}7.01$. These results indicate that the production process for collagen type I from bovine hides has a sufficient virus-reducing capacity to achieve a high margin of virus safety.

Analysis of Integrity of Killed Hantavirus Vaccine by Antigen-Capture Reverse Transcriptase PCR

  • HWANG KYUNG-A;JOO YOUNG-RAN;SHIN YOUNG-HAK;PARK KEUN-YONG;NAM JAE-HWAN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1384-1387
    • /
    • 2005
  • Hantavax(R) is one of the killed Hantavirus vaccines, and is commercially available in South Korea. This vaccine was developed by inactivation of virus isolated from infected suckling mouse brain with formalin. Although Hantavax(R) can induce neutralizing antibodies in vaccinees, the strength of this induction and the duration of the humoral immune response are controversial issues. In this study, we studied the native conformation of the killed vaccine by antigen-capture reverse transcriptase polymerase chain reaction with patient and vaccinee sera containing neutralizing antibodies against Hantavirus. The results showed that Hantavax(R) could bind HTNV patient and vaccinee sera like live virus, suggesting that the integrity of the viral epitope is maintained in Hantavax(R) and induces the protective antibodies, even though the virus was inactivated with formalin.

Efficient Target Site Selection for an RNA-cleaving DNAzyme through Combinatorial Library Screening

  • Kim, Ki-Sun;Choi, Woo-Hyung;Gong, Soo-Jeong;Oh, Sang-taek;Kim, Jae-Hyun;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.657-662
    • /
    • 2006
  • Identification of accessible sites in targeted RNAs is a major limitation to the effectiveness of antisense oligonucleotides. A class of antisense oligodeoxynucleotides, known as the “10-23” DNA enzyme or DNAzyme, which is a small catalytic DNA, has been shown to efficiently cleave target RNA at purine-pyrimidine junctions in vitro. We have designed a strategy to identify accessible cleavage sites in the target RNA, which is hepatitis C virus nonstructural gene 3 (HCV NS3) RNA that encodes viral helicase and protease, from a pool of random DNAzyme library. A pool of DNAzymes of 58 nucleotides-length that possess randomized annealing arms, catalytic core sequence, and fixed 5'/3'-end flanking sequences was designed and screened for their ability to cleave the target RNA. The screening procedure, which includes binding of DNAzyme pool to the target RNA under inactive condition, selection and amplification of active DNAzymes, incubation of the selected DNAzymes with the target RNA, and target site identification on sequencing gels, identified 16 potential cleavage sites in the target RNA. Corresponding DNAzymes were constructed for the selected target sites and were tested for RNA-cleavage in terms of kinetics and accessibility. These selected DNAzymes were effective in cleaving the target RNA in the presence of $Mg^{2+}$. This strategy can be applicable to identify accessible sites in any target RNA for antisense oligonucleotides-based gene inactivation methods.

Removal and Inactivation of Human Immunodeficiency Virus(HIV-1) by Cold Ethanol Fractionation and Pasteurization during the Manufacturing of Albumin and Immunoglobulins from Human Plasma

  • Kim, In-Seop;Eo, Ho-Gueon;Park, Chan-Woo;Chong E. Chang;Lee, Soungmin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.25-30
    • /
    • 2001
  • Viral safety is a prerequisite for manufacturing clinical albumin and immunoglobulins from human plasma pools. This study was designed to evaluate the efficacy of cold ethanol fractionation and pasteurization (60$\^{C}$ heat treatment for 10h) for the removal/inactivation of human immunodeficiency virus type 1 (HIV-1) during the manufacturing of albumin and immunoglobulins. Samples from the relevant stages of the production process were spiked with HIV-1, and the amount of virus in each fraction was quantified by the 50% tissue culture infectious dose(TCID(sub)50). Both fraction IV fractionation and pasteurization steps during albumin processing were robust and effective in inactivating HIV-1, titers of which were reduced from an initial 8.5 log(sub)10 TCID(sub)50 to undetectable levels. The log reduction factors achieved were $\geq$ 4.5 and $\geq$ 6.5, respectively. In addition, fraction III fractionation and pasteurization during immunoglobulins processing were robust and effective in eliminating HIV-1. HIV-1 titers were reduced from an initial 7.3 log(sub)10 TCID(sub)50 to undetectable levels. The log reduction factors achieved in this case were $\geq$ 4.9 and $\geq$ 5.3, respectively. These results indicate that the process investigated for the production of albumin and immunoglobulins have sufficient HIV-1 reducing capacity to achieve a high margin of safety.

  • PDF

Occurrence of Three Strains of Cucumber mosaic virus Affecting Tomato in Kuwait

  • Montasser Magdy Shaban;Dashti Narjes Haji;Ali Neda Yousef;Bhardwaj Radhika Guleri;Al-Hamar Bader
    • The Plant Pathology Journal
    • /
    • v.22 no.1
    • /
    • pp.51-62
    • /
    • 2006
  • Three strains of Cucumber mosaic virus (CMV) have been found to cause a lethal disease, referred to as fern leaf syndromes and mild mosaic symptoms in tomato (Lycopersicon esculentum Mill.) crops grown in Kuwait. CMV strains were detected and identified based on host range, symptomatology, serology, electron microscopy, and ribonucleic acid (RNA) electrophoresis in polyacrylamide gels. A high degree of viral genomic heterogeneity was detected among CMV strains isolated in Kuwait, with no apparent correlation to symptomatology in tomato host plants. Two different virus satellites of 'CMV associated RNA 5', designated CARNA 5, were detected in two virus strains that caused both lethal disease and mild symptoms, designated CMV-D1 and CMV-S1 respectively. CARNA5 was not detected in the third CMV strain that caused fern leaf syndromes designated CMV-F. All the three isolated strains were serologically indistinguishable from each other and may belong to one serotype according to Ouchterlony gel diffusion tests. These strains transmitted via aphids (Myzus persicae Sulz) in a non-persistent manner. Physical properties of the virus strains were very similar where thermal inactivation test showed that virus withstood heating for 10 min at $70^{/circ}$, dilution end point was $10^{-4}$, and the longevity in vitro at room temperature was less than 5 days for all virus strains. CMV-D1 and CMV-F were the most devastating diseases spreading in both greenhouse and field-grown tomato where aborted flower buds failed on fruit setting due to the viral infection. This is the first report to isolate three different strains of CMV in Kuwait.