• 제목/요약/키워드: view-invariant feature

검색결과 20건 처리시간 0.03초

단일 시각방향 영상에서의 기하 불변량의 특성 비교에 관한 연구 (A Study On the Comparison of the Geometric Invariance From A Single-View Image)

  • 이영재;박영태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.639-642
    • /
    • 1999
  • There exist geometrically invariant relations in single-view images under a specific geometrical structure. This invariance may be utilized for 3D object recognition. Two types of invariants are compared in terms of the robustness to the variation of the feature points. Deviation of the invariant relations are measured by adding random noise to the feature point location. Zhu’s invariant requires six points on adjacent planes having two sets of four coplanar points, whereas the Kaist method requires four coplanar points and two non-coplanar points. Experimental results show that the latter method has the advantage in choosing feature points while suffering from weak robustness to the noise.

  • PDF

컬러 불변 특징과 광역 특징을 갖는 확장 SURF(Speeded Up Robust Features) 알고리즘 (Extended SURF Algorithm with Color Invariant Feature and Global Feature)

  • 윤현섭;한영준;한헌수
    • 대한전자공학회논문지SP
    • /
    • 제46권6호
    • /
    • pp.58-67
    • /
    • 2009
  • 대응점 정합은 컴퓨터 비전에서 중요한 작업 중에 하나지만 스케일, 조명, 시점이 변한 환경에서 대응점을 찾는 과정은 매우 어렵다. 대응점 정합 알고리즘인 SURF(Speeded Up Robust Features) 기법은 SIFT(Scale Invariant Feature Transform) 기법에 비해 정합 속도가 매우 빠르고 비슷한 정합 성능을 보여 널리 사용되고 있다. 하지만 SURF 기법은 흑백 영상과 지역 공간정보를 사용하기 때문에 유사한 패턴이 존재하는 영상에서 대응점의 정합 성능이 매우 떨어진다. 이런 문제점을 해결하기 위해 본 논문에서는 강인한 컬러 특징 정보와 광역적 특징 정보를 이용하는 확장 SURF 알고리즘을 제안한다. 제안하는 알고리즘은 비슷한 패턴이 존재하더라도 색상정보과 광역 공간 정보를 추가로 사용되기 때문에 대응점 매칭 성능을 크게 향상시킨다. 본 논문에서는 제안하는 방법의 우수성을 조명과 시점이 변화하고 유사한 패턴들을 갖는 영상들에 적용하여 기존의 방법들과 비교 실험함으로서 입증하였다.

적외선 영상에서의 불변 특징 정보를 이용한 목표물 인식 (Object Recognition by Invariant Feature Extraction in FLIR)

  • 권재환;이광연;김성대
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(4)
    • /
    • pp.65-68
    • /
    • 2000
  • This paper describes an approach for extracting invariant features using a view-based representation and recognizing an object with a high speed search method in FLIR. In this paper, we use a reformulated eigenspace technique based on robust estimation for extracting features which are robust for outlier such as noise and clutter. After extracting feature, we recognize an object using a partial distance search method for calculating Euclidean distance. The experimental results show that the proposed method achieves the improvement of recognition rate compared with standard PCA.

  • PDF

칼라 불변 기반의 특징점을 이용한 영상 모자이킹 (Image Mosaicking Using Feature Points Based on Color-invariant)

  • 권오설;이동창;이철희;하영호
    • 대한전자공학회논문지SP
    • /
    • 제46권2호
    • /
    • pp.89-98
    • /
    • 2009
  • 컴퓨터 비전 분야에서 영상 모자이킹 (Image Mosaicking)은 제한된 시야각의 카메라를 사용하여 획득한 여러 장의 중첩된 영역을 가지는 영상을 한 장의 영상으로 정합하여 나타내는 기법이다. 최근에는 연속된 영상에서 카메라의 기학학적인 움직임 때문에 발생하는 영상의 왜곡이나 밝기 차에 관계없이 정확한 정합을 수행하기 위해서 특징점을 기반으로 서술자를 구성하는 정합 방법이 많이 연구되고 있다. 그러나 대부분의 특징점 검출 알고리즘들은 영상의 밝기값 기반의 처리 과정을 수행하기 때문에 영상의 칼라 성분은 다르지만 밝기값이 비슷한 경우, 또는 동영상에서 시간의 흐름에 따라 광원이 변화하는 경우에는 광원의 영향에 따라 검출되는 특징점의 수와 각각의 지역 서술자의 특성이 변하여 정확한 대응점을 검출하는데 오류를 유발하게 된다. 이런 문제점을 해결하기 위해서 본 논문은 영상의 칼라 정보를 이용한 특징점 기반의 영상 모자이킹 방법을 제안하였다. 디지털 칼라 카메라로부터 획득한 디지털 값을 좁은 대역을 갖는 가상의 카메라 출력값으로 변환하여 물체의 분광 반사율 기반의 값으로 유도하고 이것을 광원의 변화에 불변하는 칼라 불변 값 (Color-Invariant Value)으로 정의하였다. 제안된 칼라 불변값의 유효성을 검증하기 위해서 시뮬레이션된 광원들과 Macbeth Color-Checker를 이용하여 확인하였으며, 실험결과에서 제안한 방법과 기존의 SIFT 알고리즘을 비교를 통해 제안된 방법의 정합율의 향상을 확인하였다.

시점 불변인 특징과 확률 그래프 모델을 이용한 인간 행위 인식 (Human Activity Recognition using View-Invariant Features and Probabilistic Graphical Models)

  • 김혜숙;김인철
    • 정보과학회 논문지
    • /
    • 제41권11호
    • /
    • pp.927-934
    • /
    • 2014
  • 본 논문에서는 Kinect와 같은 RGB-D 센서를 이용하여 사람의 3차원 신체 포즈 스트림 데이터를 생성하고, 이로부터 사람의 일상 행위를 효과적으로 인식하는 방법을 제안한다. Kinect SDK나 OpenNI에서 제공하는 실시간 신체 포즈 데이터는 Kinect 중심의 3차원 데카르트 좌표계로 표현되기 때문에, 시점 변화 문제와 크기 변화 문제를 겪을 가능성이 높다. 이러한 문제를 해결하고 시점 및 크기 불변인 특징을 얻기 위해, 본 논문에서는 신체 포즈 데이터를 실험자의 골반을 원점으로 하는 구면 좌표계로 변환하고 실험자의 팔 길이를 이용한 크기 정규화를 수행한다. 또한, 본 논문에서는 확률 그래프 모델 중 하나인 은닉 조건부 랜덤 필드를 이용하여, 고수준의 일상 행위들이 내포하는 다양한 내부 구조를 효과적으로 표현한다. 두 가지 데이터 집합 KAD-70과 CAD-60을 이용한 실험을 통해, 본 논문에서 제안한 행위 인식 방법과 구현 시스템의 높은 인식 성능을 확인하였다.

SURF(speed up robust feature)를 이용한 시점변화에 강인한 영상 매칭 (View invariant image matching using SURF)

  • 손종인;강민성;손광훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 하계학술대회
    • /
    • pp.222-225
    • /
    • 2011
  • 영상 매칭은 컴퓨터 비전에서 중요한 기초 기술 중에 하나이다. 하지만 스케일, 회전, 조명, 시점변화에 강인한 대응점을 찾는 것은 쉬운 작업이 아니다. 이러한 문제점을 보안하기 위해서 스케일 불변 특징 변환(Scale Invariant Feature Transform) 고속의 강인한 특징 추출(Speeded up robust features) 알고리즘등에 제안되었지만, 시점 변화에 있어서 취약한 문제점을 나타냈다. 본 논문에서는 이런 문제점을 해결하기 위해서 시점 변화에 강인한 알고리즘을 제안하였다. 시점 변화에 강인한 영상매칭을 위해서 원본 영상과 질의 영상간 유사도 높은 특징점들의 호모그래피 변환을 이용해서 질의 영상을 원본 영상과 유사하게 보정한 뒤에 매칭을 통해서 시점 변화에 강인한 알고리즘을 구현하였다. 시점이 변화된 여러 영상을 통해서 기존 SIFT,SURF와 성능과 수행 시간을 비교 함으로서, 본 논문에서 제안한 알고리즘의 우수성을 입증 하였다.

  • PDF

SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적 (Robust AAM-based Face Tracking with Occlusion Using SIFT Features)

  • 엄성은;장준수
    • 정보처리학회논문지B
    • /
    • 제17B권5호
    • /
    • pp.355-362
    • /
    • 2010
  • 얼굴추적은 3차원 공간상에서 머리(head)와 안면(face)의 움직임을 추정하는 기술로, 얼굴 표정 감정인식과 같은 상위 분석단계의 중요한 기반기술이다. 본 논문에서는 AAM 기반의 얼굴추적 알고리즘을 제안한다. AAM은 변형되는 대상을 분할하고 추적하는데 광범위하게 적용되고 있다. 그러나 여전히 여러 가지 해결해야할 제약사항들이 있다. 특히 자체중첩(self-occlusion)과 부분적인 중첩, 그리고 일시적으로 완전히 가려지는 완전중첩 상황에서 보통 국부해에 수렴(local convergence)하거나 발산하기 쉽다. 본 논문에서는 이러한 중첩상황에 대한 AAM의 강인성을 향상시키기 위해서 SIFT 특징을 이용하고 있다. SIFT는 일부 영상의 특징점으로 안정적인 추적이 가능하기 때문에 자체와 부분중첩에 효과적이며, 완전중첩의 상황에도 SIFT의 전역적인 매칭성능으로 별도의 재초기화 없이 연속적인 추적이 가능하다. 또한 추적과정에서 큰 자세변화에 따른 움직임을 효과적으로 추정하기 위해서 다시점(multi-view) 얼굴영상의 SIFT 특징을 온라인으로 등록하여 활용하고 있다. 제안한 알고리즘의 이러한 강인성은 위 세 가지 중첩상황에 대해서 기존 알고리즘들과의 비교실험을 통해서 보여준다.

회전무관 3D Star Skeleton 특징 추출 (Rotation Invariant 3D Star Skeleton Feature Extraction)

  • 전성국;홍광진;정기철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권10호
    • /
    • pp.836-850
    • /
    • 2009
  • 포즈인식은 최근에 유비쿼터스 환경, 행위 예술, 로봇 제어 등에서 그 필요성이 증가되고 있는 분야로써, 컴퓨터비전, 패턴인식 등에서 활발히 연구되고 있다. 하지만 기존의 포즈인식 연구들은 사람의 회전이나 이동에 따라서 불안정한 인식률을 보인다는 단점을 갖고 있다. 이는 포즈 인식을 위해 추출한 특징이 사람의 회전, 이동 등의 다양한 변수에 영향을 크게 받기 때문이다. 이를 극복하기 위하여 본 논문에서는, 다 시점(multi-view) 환경에서의 3D Star Skeleton과 주성분 분석(principal component analysis: PCA)에 기반한 사람의 회전에 강건한 특징 추출을 제안한다. 제안된 시스템은 포즈의 특징 추출을 위해 다 시점 환경 기반의 visual hull을 생성하는 과정에서 획득 가능한 깊이 정보를 표현하는 8개의 projection map을 입력데이터로 사용한다. 이를 통해 포즈의 3D 정보를 반영하는 3D Star Skeleton을 구성하고 주성분 분석 기반의 회전에 강건한 특징을 추출한다. 실험결과에서는 다양하게 회전된 사람으로부터 생성된 3D Star Skeleton에서 특징을 추출하고 다양한 인식기를 통해 포즈인식을 해보았으며, 제안된 특징 추출 방법이 사람의 회전에 강건함을 알 수 있었다.

효과적인 3차원 객체 인식 및 자세 추정을 위한 외형 및 SIFT 특징 정보 결합 기법 (Combining Shape and SIFT Features for 3-D Object Detection and Pose Estimation)

  • 탁윤식;황인준
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.429-435
    • /
    • 2010
  • Three dimensional (3-D) object detection and pose estimation from a single view query image has been an important issue in various fields such as medical applications, robot vision, and manufacturing automation. However, most of the existing methods are not appropriate in a real time environment since object detection and pose estimation requires extensive information and computation. In this paper, we present a fast 3-D object detection and pose estimation scheme based on surrounding camera view-changed images of objects. Our scheme has two parts. First, we detect images similar to the query image from the database based on the shape feature, and calculate candidate poses. Second, we perform accurate pose estimation for the candidate poses using the scale invariant feature transform (SIFT) method. We earned out extensive experiments on our prototype system and achieved excellent performance, and we report some of the results.

가려짐 영역 검출 및 스테레오 영상 내의 특징들을 이용한 다시점 영상 생성 (Multi-view Image Generation from Stereoscopic Image Features and the Occlusion Region Extraction)

  • 이왕로;고민수;엄기문;정원식;허남호;유지상
    • 방송공학회논문지
    • /
    • 제17권5호
    • /
    • pp.838-850
    • /
    • 2012
  • 본 논문에서는 스테레오 영상에서 얻은 다양한 특징들을 이용하여 다시점 영상을 생성하는 방법을 제안한다. 제안된 기법에서는 먼저 주어진 스테레오 영상에서 명암변화 주목도 지도(intensity gradient saliency map)를 생성한다. 다음으로 좌우 영상 간에 블럭 단위의 움직임을 나타내는 광류(optical flow)를 계산하고 scale-invariant feature transform(SIFT) 기법을 통해 사물의 크기와 회전에 변하지 않는 영상의 특징 점을 구하여 이 특징점 간의 변이를 구한 다음, 이 두 변이 정보들을 결합하여 변이 주목도 지도(disparity saliency map)를 생성 한다. 생성된 변이 주목도 지도는 가려짐 영역 검출을 통해 오류 변이가 제거된다. 세 번째로 영상 워핑시에 직선의 왜곡을 최소화하기 위해 직선 세그먼트를 얻는다. 마지막으로 다시점 영상은 이렇게 추출된 영상 특징들을 제한 조건으로 사용하여 그리드 메쉬(grid-mesh) 기반 영상 워핑(warping) 기법에 의해 생성된다. 실험 결과를 통해 제안한 기법으로 생성된 다시점 영상의 화질이 기존 DIBR 기법보다 우수한 것을 확인할 수 있었다.