최근 스포츠 중계에 동원되는 카메라 대수가 증가함에 따라 수많은 카메라 화면 중 순간적으로 최고의 화면을 고르는데 어려움이 있다. 지금까지 스포츠 경기를 촬영한 영상들에서 자동으로 최고의 화면을 선택하는 방법들이 연구되어 왔지만 배경이 고정된 영상들만을 고려해 배경이 움직이는 영상들을 고려하는 연구가 필요하다. 본 논문에서는 각 영상 별로 관심선수를 추적하여 획득한 영상 내 관심선수 영역을 대상으로 관심선수의 활동량, 얼굴 가시성, 다른 선수와의 겹침 정도, 이미지 블러 현상 정도를 매 프레임 마다 정량적으로 나타내어 정량화된 값을 기반으로 최고의 화면을 선택한다. 이렇게 선택된 베스트 뷰를 20명의 일반 사람들에게 베스트 뷰와 워스트 뷰를 선택하게 하여 사람들이 선택한 베스트 뷰, 워스트 뷰와 비교한 결과 베스트 뷰와 일치율이 54.5%로 낮았지만 반대로 워스트 뷰와 일치율이 9%로 확실히 사람들이 선호하지 않는 화면은 선택하지 않는 것을 알 수 있었다.
In order to acquire a precise and quick response to an analytical query, proper selection of the views to materialize in the data warehouse is crucial. In traditional view selection algorithms, all relations are considered for selection as materialized views. However, materializing all relations rather than a part results in much worse performance in terms of time and space costs. Therefore, we present an improved algorithm for selection of views to materialize using the clustering method to overcome the problem resulting from conventional view selection algorithms. In the presented algorithm, ASVMRT (Algorithm for Selection of Views to Materialize using Reduced Table), we first generate reduced tables in the data warehouse using clustering based on attribute-values density, and then we consider the combination of reduced tables as materialized views instead of a combination of the original base relations. For the justification of the proposed algorithm, we reveal the experimental results in which both time and space costs are approximately 1.8 times better than conventional algorithms.
Lee, Keundong;Lee, Seungjae;Jung, Won Jo;Kim, Kee Tae
ETRI Journal
/
제39권1호
/
pp.97-107
/
2017
A fast and accurate building-level visual place recognition method built on an image-retrieval scheme using street-view images is proposed. Reference images generated from street-view images usually depict multiple buildings and confusing regions, such as roads, sky, and vehicles, which degrades retrieval accuracy and causes matching ambiguity. The proposed practical database refinement method uses informative reference image and keypoint selection. For database refinement, the method uses a spatial layout of the buildings in the reference image, specifically a building-identification mask image, which is obtained from a prebuilt three-dimensional model of the site. A global-positioning-system-aware retrieval structure is incorporated in it. To evaluate the method, we constructed a dataset over an area of $0.26km^2$. It was comprised of 38,700 reference images and corresponding building-identification mask images. The proposed method removed 25% of the database images using informative reference image selection. It achieved 85.6% recall of the top five candidates in 1.25 s of full processing. The method thus achieved high accuracy at a low computational complexity.
최근 대용량 데이터의 분석을 위한 top-k 질의처리 알고리즘에 대한 관심이 고조되고 있다. 그러나 기존 top-k 질의처리 알고리즘은 효율적인 인덱스 구조를 제공하지 않기 때문에, 높은 탐색 비용을 야기하며, 아울러 다양한 질의 유형을 지원하지 못하는 문제점이 존재한다. 이러한 문제점을 해결하기 위해, 본 논문에서는 그리드 인덱스 기반 뷰 선택 기법을 이용한 top-k 질의처리 알고리즘을 제안한다. 제안하는 기법은 그리드 인덱스 기반의 뷰 선택 기법을 통해 주어진 질의 영역에 대하여 최소한의 그리드 셀만을 탐색함으로써 질의처리 시간을 감소시킨다. 마지막으로, 성능 평가를 통해 제안하는 top-k 질의처리 알고리즘이 기존 알고리즘에 비해 질의처리 시간 및 질의 결과 정확도 측면에서 우수함을 나타낸다.
최근 다시점 비디오를 효율적으로 부호화하기 위해 다양한 시공간 예측 구조들이 제안되었다. 이 논문에서는 다시점 비디오 부호화 예측 구조에서 각 GOP의 첫 화면들에 삽입되는 B$_{ANC}$ 화면을 위해 양자화 계수를 결정하는 방법을 제안한다. 각 시점의 영상 화질을 균일하게 유지하고 전체적인 부호화 효율을 높이기 위해 B$_{ANC}$ 화면의 양자화 계수를 적응적으로 조절하며, 인접한 두 참조화면의 비트-왜곡 비용값을 사용하여 상관도를 추정하고 이를 이용하여 B$_{ANC}$ 화면의 양자화 계수를 결정한다. 이 논문에서 제안한 방법을 다시점 비디오 참조 예측 구조에 적용하여 부호화한 결과, 0.09$\sim$0.16 dB 정도의 PSNR 개선을 얻었다.
This paper aims to find the most effective feature selection method for the sake of opinion mining tasks. Basically, opinion mining tasks belong to sentiment analysis, which is to categorize opinions of the online texts into positive and negative from a text mining point of view. By using the five product groups dataset such as apparel, books, DVDs, electronics, and kitchen, TF-IDF and Bag-of-Words(BOW) fare calculated to form the product review feature sets. Next, we applied the feature selection methods to see which method reveals most robust results. The results show that the stacking classifier based on those features out of applying Information Gain feature selection method yields best result.
This paper presents a new vertex selection scheme for shape approximation. In the proposed method, final vertex points are determined by "two-step procedure". In the first step, initial vertices are simply selected on the contour, which constitute a subset of the original contour, using conventional methods such as an iterated refinement method (IRM) or a progressive vertex selection (PVS) method In the second step, a vertex adjustment Process is incorporated to generate final vertices which are no more confined to the contour and optimal in the view of the given distortion measure. For the optimality of the final vertices, the dynamic programming (DP)-based solution for the adjustment of vertices is proposed. There are two main contributions of this work First, we show that DP can be successfully applied to vertex adjustment. Second, by using DP, the global optimality in the vertex selection can be achieved without iterative processes. Experimental results are presented to show the superiority of our method over the traditional methods.
데이터 웨어하우스에서 실체화 할 뷰들을 알맞게 선택하는 것은 분석적인 질의에 대한 정확하고 신속한 응답을 얻기 위해서 대단히 중요한 문제이다. 기존의 뷰 선택 알고리즘들에서는 릴레이션 전체가 실체화 뷰들로서 고려되었다. 그러나, 릴레이션의 부분 대신 전체를 실체화한다는 것은 시간과 공간 비용측면에서 좋지 못한 성능을 초래한다. 따라서, 우리는 기존 뷰 선택 알고리즘들에서의 문제점을 극복하기 위해서 개선된 실체화 뷰 선택 알고리즘을 제안한다. 제안된 알고리즘 ASVMRT(Algorithm for Selection on Views to Materialize using Reduced Table)에서는 먼저 속성-값들의 농도에 기반을 둔 자동 클러스터링을 사용하여 축약 테이블들을 데이터 웨어하우스에서 생성한 다음, 원래의 베이스 릴레이션들의 조합 대신에 축약 테이블들의 조합을 실체화 뷰들로 고려한다. 제안한 알고리즘의 타당성 검증을 위하여 우리는 실험결과에서 시간 및 공간 모두에서 기존 알고리즘들보다 약 1.8배의 성능향상이 있음을 보인다.
Recently, user-created video shows high increasing in production and consumption. Among these, videos records an identical subject in limited space with multi-view are coming out. Occurring main reason of this kind of video is popularization of portable camera and mobile web environment. Multi-view has studied in visually representation technique fields for point of view. Definition of multi-view has been expanded and applied to various contents authoring lately. To make user-created videos into multi-view contents can be a kind of suggestion as a user experience for new form of video consumption. In this paper, we show the possibility to make user-created videos into multi-view video content through analyzing multi-view video contents even there exist attribute differentiations. To understanding definition and attribution of multi-view classified and analyzed existing multi-view contents. To solve time axis arranging problem occurred in multi-view processing proposed audio matching method. Audio matching method organize feature extracting and comparing. To extract features is proposed MFCC that is most universally used. Comparing is proposed n by n. We proposed multi-view video contents that can consume arranged user-created video by user selection.
In the FMS design, the important points are the selection of parts and the determination of configuration. The common approach method which solve the selection of parts are the determination of configuration has improved that the two points are simultaneously. This study finds the best method which parts combination and configuration are satisfied at the same time. And the optimal replace time of equipment under limited budget on the view Point of engineering. economy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.