• Title/Summary/Keyword: view reconstruction

Search Result 312, Processing Time 0.024 seconds

Development of a Reliable Real-time 3D Reconstruction System for Tiny Defects on Steel Surfaces (금속 표면 미세 결함에 대한 신뢰성 있는 실시간 3차원 형상 추출 시스템 개발)

  • Jang, Yu Jin;Lee, Joo Seob
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1061-1066
    • /
    • 2013
  • In the steel industry, the detection of tiny defects including its 3D characteristics on steel surfaces is very important from the point of view of quality control. A multi-spectral photometric stereo method is an attractive scheme because the shape of the defect can be obtained based on the images which are acquired at the same time by using a multi-channel camera. Moreover, the calculation time required for this scheme can be greatly reduced for real-time application with the aid of a GPU (Graphic Processing Unit). Although a more reliable shape reconstruction of defects can be possible when the numbers of available images are increased, it is not an easy task to construct a camera system which has more than 3 channels in the visible light range. In this paper, a new 6-channel camera system, which can distinguish the vertical/horizontal linearly polarized lights of RGB light sources, was developed by adopting two 3-CCD cameras and two polarized lenses based on the fact that the polarized light is preserved on the steel surface. The photometric stereo scheme with 6 images was accelerated by using a GPU, and the performance of the proposed system was validated through experiments.

The Examination of the Palace Byeoljeon, the King's non-ceremonial space, during Japanese Occupation Period to look into inner palace construction of Changdeokgung Palace (창덕궁 내전 일곽 공사로 보는 일제강점기 궁궐 별전)

  • Kim, Ji-Hyun
    • Journal of architectural history
    • /
    • v.29 no.2
    • /
    • pp.63-74
    • /
    • 2020
  • The palace byeoljeon(別殿), the King's non-ceremonial space, were created as a space for the king to comfortably use and for the king to do what he wanted to do. The byeoljeon housed various types of spaces and were flexible in that they could be repurposed to meet the demands of the times. Nevertheless, their characteristic as palatial building created for the King's convenience has remained unchanged. In this study, we examine the process by which such royal spaces were created by focusing on the reconstruction of the Changdeokgung Huijeongdang during Japanese occupation period, with a view to continuity and the transformation process. The reconstruction of Huijeongdang at the time may be considered along internal and external characteristics. Internally, Huijeongdang connected the symbolism of the king's space as the palace byeoljeon. Externally, Huijeongdang is characterized by its mixture of traditional and western style, where western style structures were housed within traditional buildings. The plans for the block of Huijeongdang also included the coexistence of traditional building, western style building, and mixture of traditional and western style building. This reflects the characteristic continuity of the byeoljeon as well as the architectural techniques of the time, manifested together within a specific spatial block.

Background-noise Reduction for Fourier Ptychographic Microscopy Based on an Improved Thresholding Method

  • Hou, Lexin;Wang, Hexin;Wang, Junhua;Xu, Min
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.165-171
    • /
    • 2018
  • Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging method that achieves both high resolution (HR) and wide field of view. In the FPM framework, a series of low-resolution (LR) images at different illumination angles is used for high-resolution image reconstruction. On the basis of previous research, image noise can significantly degrade the FPM reconstruction result. Since the captured LR images contain a lot of dark-field images with low signal-to-noise ratio, it is very important to apply a noise-reduction process to the FPM raw dataset. However, the thresholding method commonly used for the FPM data preprocessing cannot separate signals from background noise effectively. In this work, we propose an improved thresholding method that provides a reliable background-noise threshold for noise reduction. Experimental results show that the proposed method is more efficient and robust than the conventional thresholding method.

Camera pose estimation framework for array-structured images

  • Shin, Min-Jung;Park, Woojune;Kim, Jung Hee;Kim, Joonsoo;Yun, Kuk-Jin;Kang, Suk-Ju
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.10-23
    • /
    • 2022
  • Despite the significant progress in camera pose estimation and structure-from-motion reconstruction from unstructured images, methods that exploit a priori information on camera arrangements have been overlooked. Conventional state-of-the-art methods do not exploit the geometric structure to recover accurate camera poses from a set of patch images in an array for mosaic-based imaging that creates a wide field-of-view image by sewing together a collection of regular images. We propose a camera pose estimation framework that exploits the array-structured image settings in each incremental reconstruction step. It consists of the two-way registration, the 3D point outlier elimination and the bundle adjustment with a constraint term for consistent rotation vectors to reduce reprojection errors during optimization. We demonstrate that by using individual images' connected structures at different camera pose estimation steps, we can estimate camera poses more accurately from all structured mosaic-based image sets, including omnidirectional scenes.

Reconstruction of the Lost Hair Depth for 3D Human Actor Modeling (3차원 배우 모델링을 위한 깊이 영상의 손실된 머리카락 영역 복원)

  • Cho, Ji-Ho;Chang, In-Yeop;Lee, Kwan-H.
    • Journal of the HCI Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • In this paper, we propose a reconstruction technique of the lost hair region for 3D human actor modeling. An active depth sensor system can simultaneously capture both color and geometry information of any objects in real-time. However, it cannot acquire some regions whose surfaces are shiny and dark. Therefore, to get a natural 3D human model, the lost region in depth image should be recovered, especially human hair region. The recovery is performed using both color and depth images. We find out the hair region using color image first. After the boundary of hair region is estimated, the inside of hair region is estimated using an interpolation technique and closing operation. A 3D mesh model is generated after performing a series of operations including adaptive sampling, triangulation, mesh smoothing, and texture mapping. The proposed method can generate recovered 3D mesh stream automatically. The final 3D human model allows the user view interaction or haptic interaction in realistic broadcasting system.

  • PDF

Vision-based Obstacle Detection using Geometric Analysis (기하학적 해석을 이용한 비전 기반의 장애물 검출)

  • Lee Jong-Shill;Lee Eung-Hyuk;Kim In-Young;Kim Sun-I.
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.8-15
    • /
    • 2006
  • Obstacle detection is an important task for many mobile robot applications. The methods using stereo vision and optical flow are computationally expensive. Therefore, this paper presents a vision-based obstacle detection method using only two view images. The method uses a single passive camera and odometry, performs in real-time. The proposed method is an obstacle detection method using 3D reconstruction from taro views. Processing begins with feature extraction for each input image using Dr. Lowe's SIFT(Scale Invariant Feature Transform) and establish the correspondence of features across input images. Using extrinsic camera rotation and translation matrix which is provided by odometry, we could calculate the 3D position of these corresponding points by triangulation. The results of triangulation are partial 3D reconstruction for obstacles. The proposed method has been tested successfully on an indoor mobile robot and is able to detect obstacles at 75msec.

Reconstruction of Abdominal Wall Defects Using Periumbilical Perforator-Based Island Skin Flap (제대주변부 천공분지에 기저를 둔 도서형 피부피판을 이용한 복벽결손의 재건)

  • Kim, Johng-Jin;Moon, Ji-Hyun;Lee, Nae-Ho;Yang, Kyung-Moo
    • Archives of Reconstructive Microsurgery
    • /
    • v.10 no.2
    • /
    • pp.163-168
    • /
    • 2001
  • The defects of the abdominal wall could be brought about either congenitally, for instances in such cases as omphalocele or gastroschisis, or by various acquired causes-trauma, excision of tumors, excision of burn scar, tissue necrosis caused by infection, hematoma after abdominal surgery, tissue necrosis after radiation therapy and so on. As for the techniques of the reconstruction of the abdominal wall defects, many authors have developed and reported diverse methods. To summarize, primary closure, skin graft, local skin flaps, various myocutaneous flaps, free flap, fascia graft, artificial mesh, tissue expansion, etc could be used in the reconstruction of the abdominal wall defects. The periumbilical perforator-based island skin flap has a many advantages such as no significant sacrifice of the rectus abdominis muscle, wide rotation arc, reliable blood flow of the perforator, short elevation time for flap, and for middle-aged, obese patients, the donor site may be the best from the cosmetic point of view. We used perforator-based island skin flap in 5 cases with reasonable result from March 1999 to May 2001. There were no significant complications and donor sites could be repaired primarily.

  • PDF

A Study on Reconstruction of Trigonometry Based on Ascent from the Abstract to the Concrete (추상에서 구체로의 상승을 통한 삼각함수의 재구성)

  • Kang, Mee Kwang;Han, Inki
    • The Mathematical Education
    • /
    • v.56 no.1
    • /
    • pp.101-118
    • /
    • 2017
  • In this article we study a reconstruction of mathematical knowledge on trigonometry by the method of ascent from the abstract to the concrete from the pedagogical viewpoint of dialectic. The direction of education is shifting in a way that emphasizes the active constitution of knowledge by the learning subjects from the perspective that knowledge is transferred from the teacher to the student. In mathematics education, active discussions on the construction of mathematical knowledge by learners have been going on since the late 1990s. In Korea, concepts and aspects of constructivism such as operational constructivism, radical constructivism, and social constructivism were introduced. However, examples of practical construction according to the direction of construction of mathematical knowledge are very hard to find. In this study, we discuss the direction of the actual construction of mathematical knowledge and suggest a concrete example of the actual construction of trigonometry knowledge from a constructivist point of view. In particular, we discuss the process of the construction of theoretical knowledge, the ascent from the abstract to the concrete, based on the literature study from the pedagogical viewpoint of dialectic, and show how to construct the mathematical knowledge on trigonometry by the method of ascent from the abstract to the concrete. Through this study, it is expected to introduce the new direction and new method of knowledge construction as 'the ascent from the abstract to the concrete', and to present the possibility of applying dialectic concepts to mathematics education.

implementation of 3D Reconstruction using Multiple Kinect Cameras (다수의 Kinect 카메라를 이용한 3차원 객체 복원 구현)

  • Shin, Dong Won;Ho, Yo Sung
    • Smart Media Journal
    • /
    • v.3 no.4
    • /
    • pp.22-27
    • /
    • 2014
  • Three-dimensional image reconstruction allows us to represent real objects in the virtual space and observe the objects at arbitrary view points. This technique can be used in various application areas such as education, culture, and art. In this paper, we propose an implementation method of the high-quality three-dimensional object using multiple Kinect cameras released from Microsoft. First, We acquire color and depth images from triple Kinect cameras; Kinect cameras are placed in front of the object as a convergence form. Because original depth image includes some areas where have no depth values, we employ joint bilateral filter to refine these areas. In addition to the depth image problem, there is an color mismatch problem in color images of multiview system. In order to solve it, we exploit an color correction method using three-dimensional geometry. Through the experimental results, we found that three-dimensional object which is used the proposed method is more naturally represented than the original three-dimensional object in terms of the color and shape.

Low-noise reconstruction method for coded-aperture gamma camera based on multi-layer perceptron

  • Zhang, Rui;Tang, Xiaobin;Gong, Pin;Wang, Peng;Zhou, Cheng;Zhu, Xiaoxiang;Liang, Dajian;Wang, Zeyu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2250-2261
    • /
    • 2020
  • Accurate localization of radioactive materials is crucial in homeland security and radiological emergencies. Coded-aperture gamma camera is an interesting solution for such applications and can be developed into portable real-time imaging devices. However, traditional reconstruction methods cannot effectively deal with signal-independent noise, thereby hindering low-noise real-time imaging. In this study, a novel reconstruction method with excellent noise-suppression capability based on a multi-layer perceptron (MLP) is proposed. A coded-aperture gamma camera based on pixel detector and coded-aperture mask was constructed, and the process of radioactive source imaging was simulated. Results showed that the MLP method performs better in noise suppression than the traditional correlation analysis method. When the Co-57 source with an activity of 1 MBq was at 289 different positions within the field of view which correspond to 289 different pixels in the reconstructed image, the average contrast-to-noise ratio (CNR) obtained by the MLP method was 21.82, whereas that obtained by the correlation analysis method was 5.85. The variance in CNR of the MLP method is larger than that of correlation analysis, which means the MLP method has some instability in certain conditions.