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I. INTRODUCTION

In conventional optical microscopy, large field of view 

(FoV) and high resolution usually cannot be achieved 

simultaneously. Thus, some computational imaging methods 

have been proposed to circumvent this physical limit by 

merging information from multiple images computationally 

[1, 2]. Fourier ptychography (FP) is one such computational 

imaging method, which is based on a coded illuminator. 

Fourier ptychographic microscopy (FPM) achieves intensity 

and phase images with both high-resolution (HR) and large 

FoV by combining the FP method with optical microscopy. 

Recently, FPM has been widely studied in three-dimensional 

imaging [3], multiplexed imaging [4-6], diffraction tomo-

graphy [7], fluorescence imaging [8, 9], digital pathology 

[10], and in vitro cell-culture imaging [11].

The hardware setup of a typical FPM platform involves 

a simple replacement of the light source for conventional 

optical microscopy with a programmable LED array, as 

shown in Fig. 1. The LED matrix is used to successively 

illuminate the sample at different angles of incidence, and 

the low-resolution (LR) images are captured sequentially. 

Due to the limited numerical aperture (NA) of the objective, 

the high-frequency parts of the sample that exceed the pass-

band are captured as dark-field images. The low-frequency 

parts of the sample that do not exceed the passband are 

captured as bright-field images. These captured LR dark- 

field images contain information about features of sub- 

diffraction-limit size, which correspond to shifted regions 

of the sample’s Fourier domain. The HR complex image is 

reconstructed by stitching all of the LR images together 

coherently in the Fourier domain, using a phase-retrieval 

algorithm. However, in view of the much lower illumination 

Background-noise Reduction for Fourier Ptychographic Microscopy 

Based on an Improved Thresholding Method

Lexin Hou1, Hexin Wang2, Junhua Wang1, and Min Xu1*

1Shanghai Engineering Center of Ultra-precision Optical Manufacturing, Department of Optical Science 

and Engineering, Fudan University, Shanghai 200433, China
2CRT Lab, China Innovation and R&D Center, Carl Zeiss (Shanghai) Co., Ltd., Zeiss Group, 

Shanghai 200131, China

(Received December 12, 2017 : revised January 10, 2018 : accepted February 12, 2018)

Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging method that 

achieves both high resolution (HR) and wide field of view. In the FPM framework, a series of low- 

resolution (LR) images at different illumination angles is used for high-resolution image reconstruction. 

On the basis of previous research, image noise can significantly degrade the FPM reconstruction result. 

Since the captured LR images contain a lot of dark-field images with low signal-to-noise ratio, it is very 

important to apply a noise-reduction process to the FPM raw dataset. However, the thresholding method 

commonly used for the FPM data preprocessing cannot separate signals from background noise effectively. 

In this work, we propose an improved thresholding method that provides a reliable background-noise 

threshold for noise reduction. Experimental results show that the proposed method is more efficient and 

robust than the conventional thresholding method.

Keywords : Computational imaging, Phase retrieval, Noise reduction, Fourier optics and signal processing

OCIS codes : (110.1758) Computational imaging; (100.5070) Phase retrieval; (070.0070) Fourier optics 

and signal processing; (100.3010) Image reconstruction techniques

*Corresponding author: minx@fudan.edu.cn, ORCID 0000-0002-4901-0088

 Color versions of one or more of the figures in this paper are available online.

*

This is an Open Access article distributed under the terms of the Creative  Commons  Attribution  Non-Commercial  License (http://creativecommons.org/
licenses/by-nc/4.0/)  which  permits  unrestricted  non-commercial  use,  distribution,  and  reproduction  in  any medium, provided the original work is 
properly cited.

*Copyright  2018 Current Optics and Photonics 

ISSN: 2508-7266(Print) / ISSN: 2508-7274(Online)

DOI: https://doi.org/10.3807/COPP.2018.2.2.165



Current Optics and Photonics, Vol. 2, No. 2, April 2018166

efficiency of high-angle incident light, the dark-field images 

always have a low signal-to-noise ratio (SNR), which can 

significantly affect FP stability and degrade the reconstruction 

result, based on a previous study [12]. Although some im-

proved algorithms have been proposed recently to minimize 

the negative influence of noise during FP reconstruction 

[13-17], they all operate from the perspective of improving 

an algorithm’s convergence properties, but the noise-reduction 

parts have not been discussed.

Generally speaking, noise reduction is indispensable for 

computational imaging methods. In FPM, high data quality 

can always provide a good reconstruction result and 

improve convergence speed. In practice, the thresholding 

method [5] is usually used for FPM data processing. For 

this method, no prior knowledge of noise characteristics is 

needed. Several subregions of each dark-field LR image are 

selected as background to calculate the average intensity 

level, and this average level is set as a noise-reduction 

threshold, to distinguish meaningful signal from background 

noise. Although this method is simple and in some cases 

works well, the measurement of the average noise level is 

somewhat ambiguous, because the selection of subregions 

is usually empirically determined and cannot be applied 

universally to an arbitrary sample. To solve the uncertainty 

in background-noise-level measurement in the conventional 

thresholding noise-reduction method, in this work we 

propose an improved thresholding method that provides a 

reliable background-noise threshold for noise reduction. In 

the proposed method, the noise-reduction threshold for 

each measured LR image is calculated individually, by 

comparing the average intensity difference between target 

image and measured image in every iteration. Our method 

takes advantage of the FPM calculation framework, and 

there is no need to select subregions specifically for 

different samples to calculate the average background-noise 

level. Experimental results show that the proposed method 

is more efficient and robust, compare to the conventional 

thresholding method.

II. PRINCIPLE AND METHODS

2.1. Principle of FPM

To illustrate our proposed method clearly, we first give 

a brief review of the basic principle and framework of 

FPM. Conventional optical microscopy can achieve either 

large FoV or high resolution, but not both. Usually the 

sample is scanned mechanically to address this problem. 

Unlike the mechanical method, the FPM achieves the same 

space-bandwidth product by scanning the source in the 

Fourier domain with a programmable LED array. The 

absence of mechanical scanning makes the FPM technique 

easy to apply to conventional optical microscopy. By 

applying FPM, both a large FoV and high resolution can 

be achieved. In addition, quantitative phase information 

about a sample can be also acquired [18].

The hardware setup of a typical FPM platform involves 

a programmable LED array and optical microscopy with a 

low-NA objective lens. The sample is illuminated from 

different angles by lighting up each individual LED succes-

sively, and the corresponding LR image is captured by the 

camera. Although the resolutions of the captured LR 

images individually do not go beyond the objective’s NA 

limits, they do contain information about sub-diffraction- 

limit-sized features, which correspond to shifted regions of 

the sample’s Fourier domain. A resolution surpassing the 

objective’s diffraction limit can be achieved by coherently 

stitching these subregions together with a phase-retrieval 

algorithm in the Fourier domain. The final resolution of 

FPM is determined by the sum of objective NA and 

illumination NA.

The FPM framework can be summarized in five steps. 

First, the FPM method makes an initial guess of the HR 

sample’s complex amplitude distribution in the spatial 

domain, 
r , where r    denotes the coordinates in 

the focal plane. Usually the amplitude of an LR image with 

a vertical incident plane wave is up-sampled to generate 

an initial guess about the HR image. This HR initial guess 

is then transformed to the Fourier domain. Second, a small 

subregion of the initial guess’s Fourier spectrum is 

intercepted and an inverse Fourier transform is applied, to 

generate an LR target complex image  
 






 (where the 

superscript n represents the number of the nth LR image, 

and the subscript t denotes the target image). This process 

is equivalent to a low-pass filtering of the coherent imaging 

system, the position of the low-pass filter corresponding to 

a particular oblique illumination angle. Third, following 

phase retrieval concepts, the target image’s amplitude  
  

is updated with the square root of the LR measurement 

captured under the corresponding illumination angle,  
  

(where the subscript m denotes the measured image), while 

the phase component remains unchanged. The Fourier trans-

form is then applied to the updated target image  
 






 

and is used to replace the corresponding subregion of the 

FIG. 1. FPM experimental setup.
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HR-sample estimate’s Fourier spectrum. Fourth, steps 2 and 

3 are repeated for different illumination angles. Note that 

a sufficient overlapping proportion of adjacent subregions 

in the Fourier domain is significant for maintaining data 

redundancy and convergence. The iterative update process 

continues for all N images. Finally, steps 2-4 are repeated 

until either a terminating condition is met, or a fixed 

number of iterations have been completed.

2.2. Thresholding Method

Due to the lower illumination efficiency of high-angle 

incident light, the dark-field images always have a lower 

signal-to-noise ratio (SNR) than the bright-field images. 

Thus a noise-reduction process has to be applied to the 

dark-field images before FP reconstruction. The conceivable 

background noise of the dark-field images can be a mixture 

of stray light and inevitable noise, such as the image 

sensor’s dark current, thermal or readout noise, dead pixels, 

etc. [19-22]. The thresholding method is a method for 

background noise reduction that is commonly used in FPM 

data processing. In this method, several small subregions 

of each dark-field LR image are selected, and their average 

intensity levels are calculated as a threshold for noise 

reduction. For the nth dark-field image, the threshold is 

calculated as follows:

 〈


〈 
r〉〉 (1)

where  
   represents the ith subregion of the nth LR 

dark-field image, and 〈⋅〉 denotes the arithmetic averaging 

operator. The noise-reduction process is performed by sub-

tracting the noise threshold from the LR dark-field image:

 
r   

 r (2)

where  
r  represents the image to be used for the updating 

process (the subscript u stands for updating process). To 

remove the residual background noise, for each processed 

image, pixels with values below 0 are set to 0 to maintain 

background continuity. 

The principle of the thresholding method is demonstrated 

in Fig. 2. Figure 2(a) shows one dark-field image of the 

FPM dataset, and the nonuniform distribution of background 

noise can be observed. Two subregions (both 100 × 100 

pixels) are selected to properly calculate the noise threshold, 

as shown in Figs. 2(a1) and 2(a2). Figure 2(b) shows the 

LR image after noise reduction. For the conventional 

thresholding method, a clean and uniform background can 

be achieved only when the subregions used for noise- 

threshold calculation are appropriately selected. However, 

for samples with complicated distributions, selecting proper 

subregions from the dark-field images can be ambiguous 

and inefficient.

2.3. Improved Thresholding Method for Fourier Ptycho-

graphic Microscopy

To establish proper thresholds for the datasets of any 

sample, we first investigate the amplitude replacement and 

updating processes of the FPM framework in steps 2 and 3. 

Usually the Fourier-spectrum subregion interception in step 

2 is ranked according to ascending order of illumination 

NA. Thus, at the beginning of each iteration subregions 

within the objective NA are intercepted to generate the LR 

target images, and the bright-field images are used for 

initial updating. Due to the high SNR of the bright-field 

images, the corresponding updated subregions in the Fourier 

domain also have good SNR. An assessment of the 

sufficient overlapping percentage of adjacent subregions is 

needed for the FPM. When the interception and updating 

processes come to the beginning of the dark-field regions, 

the generated target images also have better SNR than the 

measured images. Therefore, the initially generated target 

image of the dark-field image tends to be less noisy, and 

the noise threshold can be found by comparing the 

difference in arithmetic mean intensity values between the 

target and measured images:

 〈 
 r〉〈 

r〉 (3)

where 〈 
r〉 represents the average intensity value of the 

n
th target image and 〈 

 r〉 is the average intensity value 

of the nth measured image. The noise-reduction process in 

Eq. (2) is applied to the measured image to obtain  
r , 

and is then used for updating in step 3. After applying this 

noise-reduction approach, the following adjacent subregion 

to be intercepted and updated in the Fourier domain can 

also maintain good SNR. This improved SNR consistency 

means the noise-level-estimation approach can be applied to 

the remaining update processes. A general SNR improvement 

of the FPM reconstruction can be ultimately achieved.

FIG. 2. Thresholding method for background-noise reduction. 

(a) One unprocessed dark-field image of the FPM dataset. 

(a1) and (a2) are magnified images of subregions selected for 

noise-threshold calculation. (b) Image after noise reduction. 

(b1) and (b2) are the same magnified regions, after noise 

reduction.
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Based on the above discussion, our proposed noise- 

reduction method can be easily integrated with the conven-

tional FPM reconstruction framework. The FPM framework 

combined with the proposed method is illustrated in Fig. 3. 

In the actual noise-reduction process, we introduce a general 

weighting factor   to balance the noise-reduction process:

 
r   

 r⋅ (4)

Since the SNR of the measured dark-field image is related 

to exposure time, illumination efficiency, image-sensor per-

formance, etc., it is difficult to unify the SNR performance 

of different FPM datasets. Therefore, we introduce the 

weighting factor, to make the proposed method easier to 

apply to different experimental setups. A larger value of will 

  enhance the noise-reduction performance, but lose more 

of the high-frequency information in the dark-field images. 

In general, a value of   in the range of 1 to 1.05 shows 

a nice balance between noise-reduction and reconstruction- 

resolution performance, as will be demonstrated in the next 

section.

III. EXPERIMENTS AND DISCUSSION

For most noise-reduction methods, the noise-reduction 

performance and capability to preserve details are contra-

dictory. Thus it is necessary to investigate the resolution 

performance of the FPM combined with different noise- 

reduction methods. We first apply the conventional thres-

holding method and our proposed method to the public 

FPM dataset of a USAF 1951 resolution target (downloaded 

from http://www.laurawaller.com/opensource/) for comparison. 

This dataset is captured under a 4×, 0.1-NA objective lens, 

and contains 293 LR images. The detailed experimental 

setup can be found in Ref. [5]. The EPRY algorithm [13] is 

popularly used for a robust FPM reconstruction process that 

recovers the HR complex distribution and pupil function 

jointly. In this work, the EPRY algorithm is combined with 

noise-reduction methods for testing purposes. Note that all 

of the noise-reduction processes are only applied to the LR 

dark-field images.

Figure 4 demonstrates the FPM reconstruction results for 

the conventional thresholding method, with different sub-

regions selected for noise reduction. Figure 4(a) shows the 

full FoV of one LR bright-field image, and a small segment 

(100 × 100 pixels, as shown in Fig. 4(a1)) is cropped for 

reconstruction and comparison. Panel groups (b), (c), and 

(d) show the reconstructed amplitude, phase, and pupil 

function respectively, using the EPRY-FPM for 10 iterations. 

FIG. 3. The FPM reconstruction framework, combined with 

the proposed noise-reduction method.

FIG. 4. Reconstruction results using the conventional thresholding method, with different subregions selected for noise reduction. (a) The 

full FoV of a LR bright-field image; (a1) presents the cropped and magnified region for reconstruction. Panel groups (b), (c), and (d) 

show the reconstructed amplitude, phase, and pupil function respectively. (b1)-(d1) are the results without noise reduction. (b2)-(d2), 

(b3)-(d3) and (b4)-(d4) are the results with noise reduction, corresponding to different subregions selected for noise estimation.
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Three pairs of different subregions (100 × 100 pixels, marked 

with green, yellow, and blue boxes, as shown in Fig. 4(a)) 

are selected for noise estimation, and the corresponding 

reconstruction results are placed in the same colored boxes. 

In contrast, (b1)-(d1) show the results without any noise 

reduction. It is clear that the reconstruction without noise 

reduction is significantly degraded by the intense noise and 

resulting nonuniform background distribution. By applying 

the thresholding method, the reconstruction quality can be 

improved, as shown in the rest of the reconstruction results 

in Fig. 4. However, it is also clear that the reconstruction 

results obtained with the conventional thresholding method 

can be easily affected by the selection of subregions used 

for noise estimation. Therefore, FPM reconstruction with the 

conventional thresholding method cannot always maintain 

good consistency.

The FPM reconstruction results with the proposed noise- 

reduction method are presented in Fig. 5. The same small 

region is used for reconstruction, with the corresponding   

ranging from 0.95 to 1.15. As in Fig. 4, panel groups (a), 

(b), and (c) show the recovered amplitude, phase, and 

pupil function respectively. By comparing the reconstruction 

results, it is easy to see that when the weighting factor   

is less than 1, the residual noise cannot be removed 

effectively, resulting in artifacts in the recovered amplitude 

and phase images. On the contrary, when   is greater than 

or equal to 1, the artifacts fade away and the backgrounds 

of reconstructed amplitude and phase maintain good 

uniformity. By comparing the reconstruction results, it is 

easy to see that the proposed method maintains better 

noise-reduction consistency when the weighting factor is 

not less than 1. Moreover, the reconstructed amplitude and 

phase images using the proposed method have improved 

background uniformity.

To further investigate the noise-reduction and resolution 

properties of our proposed method, the phase distributions 

for different weight factor values along the dashed lines 

indicated in Figs. 5(b1)~5(b5) are shown in Fig. 6. Here 

the background is taken as the zero-phase point. The phase- 

distribution curves in Fig. 6 clearly show nine sharp peaks 

along the horizontal axis, corresponding to the nine scribed 

bars in the USAF resolution target. As for the red curve, 

for which the weighting factor   is less than 1, many 

parts of the curve below the zero-phase point can be seen. 

This is because more residual noise is preserved, which 

degrades the consistency of the recovered phase. For the 

remaining curves in Fig. 6, when the weighting factor is 

greater or equal than 1, the recovered phase distributions 

maintain good consistency. It can also be observed that the 

contrast of the phase distribution decreases slightly as   

increases. This is due to more of the meaningful signal 

being removed with higher weighting factors. Thus, in 

practice, the weighting factor can be flexibly adjusted to 

balance noise reduction and resolution. 

In addition, the proposed method was also tested with 

biological samples, based on our experimental setup shown 

in Fig. 1. This setup is modified from a standard optical- 

microscopy configuration (ZEISS Axio Scope) by replacing 

its illumination component with a 16 × 16 array of WS2812 

FIG. 5. Reconstruction results using the proposed noise-reduction method with the corresponding weighting factor ranging from 0.95 

to 1.15. Panel groups (a), (b), and (c) present the recovered amplitude, phase, and pupil function respectively, using the EPRY-FPM 

for 10 iterations.

FIG. 6. The phase distribution for different weighting factors, 

along the dotted lines in Figs. 5(b1)~5(b5).
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programmable RGB LEDs (distance between adjacent LED 

elements is 10 mm, the green channel is used for experi-

ments; the central wavelength for green is  = 525 nm). 

The optical system is equipped with a 10×, 0.25-NA 

objective lens, and an Arduino UNO R3 SCM is used to 

control the LED array. The LED array is placed 100 mm 

below the sample, and is synchronized with the external 

trigger of the camera (Point Grey, CM3-U3-50S5M-CS). The 

camera in the experiment has 5 megapixels (2448 × 2048 

resolution, pixel size 3.45 µm) and a 12-bit output depth. 

For all experiments reported in the following section, a 

circular LED area is used for illumination and the dia-

metrical number of the rounded LED is 15, resulting in a 

final synthetic  of approximately 0.84 in the lateral 

directions. The theoretical maximum resolution of our setup 

is ≈ 0.625 µm.

In this work, a blood smear with a relatively complex 

background distribution is used for the FPM sampling. 

This dataset contains 177 LR images, including 9 bright- 

field and 168 dark-field images. In Fig. 7 we present the 

reconstruction results for the dataset, for different treat-

ments. A small section (300 × 300 pixels, as shown in Fig. 

7(a1)) is cropped from the full FoV for reconstruction and 

comparison. Panel groups (b), (c), and (d) show the recon-

structed amplitude, phase, and pupil function respectively. 

For the conventional thresholding method, two subregions 

are randomly selected (100 × 100 pixels each, marked with 

green boxes, as shown in Fig. 7(a)) and their average 

intensity value is calculated as the noise-reduction threshold, 

per Eq. (1). (b2)-(d2) show the reconstruction using the 

conventional thresholding method, while (b3)-(d3) show 

the results using the proposed method with weighting 

factor  = 1.01. The reconstructed amplitude and phase 

distributions suggest that, compared to the conventional 

thresholding method, our proposed method provides clearer 

detail in the sample and a more uniform background. We 

also investigated the variation of noise-level estimation of 

the proposed method with iteration. The noise-level estimate 

for each dark-field image along with the number of iterations 

is shown in Fig. 8.

In Fig. 8, all the dark-field images are labeled according 

to ascending order of illumination NA. It can be seen that 

in the early iterations the noise-level estimates are relatively 

high, and as the iteration time increases the noise levels 

slowly decrease and finally reach stable levels. This 

phenomenon is predictable, according to the FPM model. 

During the early iterations, due to a lack of high-frequency 

components in the HR-spectrum estimation, the generated 

LR target images have relatively low energy, resulting in 

high noise-level estimates. As the number of iterations 

increases, however, the high-frequency parts of the HR 

spectrum are gradually reconstructed and finally converge. 

The noise-level estimates also ultimately reach stable values. 

This property of gradually decreasing noise-level estimation 

FIG. 7. Reconstruction results for a blood smear, for different treatments. (a) The full FoV of a LR bright-field image; (a1) presents 

the cropped and magnified region for reconstruction. Panel groups (b), (c), and (d) show the reconstructed amplitude, phase, and pupil 

function respectively. (b1)-(d1) show the results without noise reduction. (b2)-(d2) show the results using the conventional 

thresholding method. (b3)-(d3) show the results using the proposed method with weighting factor   = 1.01.

FIG. 8. Noise-level estimation of each dark-field image, along 

with number of iterations.
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is efficient for balancing noise reduction with preserving 

detail, as demonstrated by earlier experimental results. 

Based on the above experimental comparison, it is clear 

that the proposed method maintains good resolution and 

noise-reduction performance when it is applied to a FPM 

dataset captured with different experimental setup. We 

would like to note that the selection of the weighting factor 

is not very sensitive to different FPM datasets, according 

to our experiments. In general, to balance the background- 

quality and resolution performance, a weighting factor value 

in the range of 1 to1.05 is recommended.

IV. CONCLUSION

In summary, we have proposed a background-noise- 

reduction method for Fourier ptychographic microscopy, 

based on an improved thresholding method that estimates a 

reliable background-noise threshold for the noise-reduction 

process. Our proposed method can be easily combined with 

the FPM calculation framework, and the noise-reduction 

and reconstruction-resolution performance can be flexibly 

balanced by adjusting only one weighting factor. Experi-

mental results show that the proposed method yields clearer 

details of the sample and a more uniform background, 

compared to the conventional thresholding method. It is 

also demonstrated that the proposed method possesses good 

noise-reduction consistency for different samples. Therefore, 

by applying the proposed method, no preprocessing or prior 

knowledge of the sample dataset is needed; this improves 

the applicability and robustness of the FPM technique. 
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