This paper describes a method for vision-based person identification that can detect, track, and recognize person from video using multiple cues: height and dressing colors. The method does not require constrained target's pose or fully frontal face image to identify the person. First, the system, which is connected to a pan-tilt-zoom camera, detects target using motion detection and human cardboard model. The system keeps tracking the moving target while it is trying to identify whether it is a human and identify who it is among the registered persons in the database. To segment the moving target from the background scene, we employ a version of background subtraction technique and some spatial filtering. Once the target is segmented, we then align the target with the generic human cardboard model to verify whether the detected target is a human. If the target is identified as a human, the card board model is also used to segment the body parts to obtain some salient features such as head, torso, and legs. The whole body silhouette is also analyzed to obtain the target's shape information such as height and slimness. We then use these multiple cues (at present, we uses shirt color, trousers color, and body height) to recognize the target using a supervised self-organization process. We preliminary tested the system on a set of 5 subjects with multiple clothes. The recognition rate is 100% if the person is wearing the clothes that were learned before. In case a person wears new dresses the system fail to identify. This means height is not enough to classify persons. We plan to extend the work by adding more cues such as skin color, and face recognition by utilizing the zoom capability of the camera to obtain high resolution view of face; then, evaluate the system with more subjects.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.14
no.3
/
pp.139-146
/
2014
This paper proposes an efficient method for automatically distinguishing various facial expressions. To recognize the emotions from facial expressions, the facial images are obtained by digital cameras, and a number of feature points were extracted. The extracted feature points are then transformed to 49-dimensional feature vectors which are robust to scale and translational variations, and the facial emotions are recognized by statistical pattern classifiers such Naive Bayes, MLP (multi-layer perceptron), and SVM (support vector machine). Based on the experimental results with 5-fold cross validation, SVM was the best among the classifiers, whose performance was obtained by 50.8% for 6 emotion classification, and 78.0% for 3 emotions.
Song, Bok Deuk;Kim, Hyeong-Jin;Jeong, Hyeon-Jae;Choi, Yeon Jun
The Journal of the Korea Contents Association
/
v.19
no.11
/
pp.270-277
/
2019
These days, with the advent of digital broadcasting, media environment offers users an opportunity to enjoy differentiated contents in a more aggressive fashion through user-media interactions based on computer technology. In fact, the development of contents which can induce spontaneous acts from users such as outdoor ads which use certain sensors and devices and exhibition halls has been active. With the development of low-price motion recognition devices, people have been able to enjoy diverse interaction-applied media by recognizing users' motion data without body contact. In this paper, we developed an interactive media player that can recognize the user's motion and control the video in the web service environment without installing a specific program. In addition, we set user motion recognition range and developed a user motion recognition algorithm suitable for the Leap Motion equipment installed in the kiosk. The results of this study can be experienced by various interactive media such as interactive tourism, education, and movie contents in kiosks that can be installed in public places.
In the video with a various environment, background modeling is important for extraction and recognition the moving object. For this object recognition, many methods of the background modeling are proposed in a process of preprocess. Among these there is a Kumar method which represents the Queue-based background modeling. Because this has a fixed period of updating examination of the frame, there is a limit for various system. This paper use a background modeling based on the queue. We propose the method that major parameters are decided as adaptive by background model. They are the queue size of the sliding window, the sire of grouping by the brightness of the visual and the period of updating examination of the frame. In order to determine the factors, in every process, RCO (Ratio of Correct Object), REO (Ratio of Error Object) and UR (Update Ratio) are considered to be the standard of evaluation. The proposed method can improve the existing techniques of the background modeling which is unfit for the real-time processing and recognize the object more efficient.
Journal of the Korea Academia-Industrial cooperation Society
/
v.11
no.5
/
pp.1677-1684
/
2010
Recently, due to the development of mobile phone and supply of smart phone, many contents have been developed. Especially, since the small-sized cameras are equiped in mobile devices, people are interested in the image based contents development, and it also becomes important part in their practical use. Among them, the character recognition system can be widely used in the applications such as blind people guidance systems, automatic robot navigation systems, automatic video retrieval and indexing systems, automatic text translation systems. Therefore, this paper proposes a system that is able to extract text area from the natural images captured by smart phone camera. The individual characters are recognized and result is output in voice. Text areas are extracted using Adaboost algorithm and individual characters are recognized using error back propagated neural network.
Making good predictions about the outcome of one's actions would seem to be essential in the context of social interaction and decision-making. This paper proposes a computational model for learning articulated motion patterns for action recognition, which mimics biological-inspired visual perception processing of human brain. Developed model of cortical architecture for the unsupervised learning of motion sequence, builds upon neurophysiological knowledge about the cortical sites such as IT, MT, STS and specific neuronal representation which contribute to articulated motion perception. Experiments show how the model automatically selects significant motion patterns as well as meaningful static snapshot categories from continuous video input. Such key poses correspond to articulated postures which are utilized in probing the trained network to impose implied motion perception from static views. We also present how sequence selective representations are learned in STS by fusing snapshot and motion input and how learned feedback connections enable making predictions about future input sequence. Network simulations demonstrate the computational capacity of the proposed model for motion recognition.
People generally believe that disaster forecast and warning systems and response systems are well established in the age of cutting edge technology. As a matter of fact, reliable systems to respond to disasters are not properly equipped, as we witnessed the Sewol ferry disaster in 2014. The existing forecast and warning systems are based on sensor information with low efficiency, and image information is only operated by monitoring staff manually. In addition, the interconnection between a warning system and a response system in order to decide how to cope with the recognized disaster is very insufficient. This paper introduces the CCTV based disaster recognition and real time crisis response system composed of the CCTV image recognition engine and the crisis response technique. This system has brought the possibility to overcome the limitations of existing sensor based forecast and warning systems, and to resolve the problems in the absence of monitoring staff when responding to crisis.
We develop the method of estimating the endpoints of speech by jointly using the lip motion (visual speech) and speech being included in multimedia data and then propose a new speech recognition system (SRS) based on that method. The endpoints of noisy speech are estimated as follows : For each test word, two kinds of endpoints are detected from visual speech and clean speech, respectively Their difference is made and then added to the endpoints of visual speech to estimate those for noisy speech. This estimation method for endpoints (i.e. speech interval) is applied to form a new SRS. The SRS differs from the convention alone in that each word model in the recognizer is provided an interval of speech not Identical but estimated respectively for the corresponding word. Simulation results show that the proposed method enables the endpoints to be accurately estimated regardless of the amount of noise and consequently achieves 8 o/o improvement in recognition rate.
Journal of the Korea Institute of Military Science and Technology
/
v.10
no.3
/
pp.139-147
/
2007
In military transportation, the use of wide trailer for transporting the large and heavy weight equipments such as tank, armoured vehicle, and mobile gunnery is quite common. So, the vulnerability of causing traffic accidents for these wide military trailer to bump or collide with another car in adjacent lane is very high due to its broad width in excess of its own lane's width. Also, the possibility of these strayed accidents can be increased especially by the careless driver. In this paper, the recognition system of lane and vehicle headway direction is developed to detect the possible collision and warn the driver to prevent the fatal accident. In the system development, Kalman filtering is used first to extract the border of driving lane from the video images supplied by the CCD camera attached to the vehicle and the driving lane detection is completed with regression analysis. Next, the vehicle headway direction is recognized by using neural network scheme with the extracted parameters of the detected driving lane feature. The practical experiments for the developed system are also carried out in the real traffic road of Seoul city area and the results show us the more than 90% accuracy in recognizing the driving lane and vehicle headway direction.
Journal of the Korea Society of Computer and Information
/
v.13
no.5
/
pp.187-193
/
2008
Interface technologies for a user to control home automation system in wearable computing environment has been studied recently. This paper proposes a new interface method for a disabled person to control home automation system in wearable computing environment by using EOG sensing circuit and marker recognition. In the proposed interface method, the operations of a home network device are represented with human readable markers and displayed around the device. A user wearing a HMD, a video camera, and a computer selects the desired operation by seeing the markers and selecting one of them with eye movement from the HMD display The requested operation is executed by sending the control command for the selected marker to the home network control device. By using the EOG sensing circuit and the marker recognition system a user having problem with moving hands and fit can manipulate a home automation system with only eye movement.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.