본 논문에서는 CCTV를 통해 실시간 범죄에 대응할 수 있도록 CCTV 카메라 간 협업이 가능한 기술과 이를 활용한 실시간 범죄대응 서비스에 대해 연구하였다. 본 연구에서 개발하고자 하는 CCTV 협업 기술은 한 곳의 CCTV에서 추출된 이동 객체(용의자)가 범위를 벗어나 다른 CCTV로 이동했을 때 객체의 유사도 정보를 관제자에게 전달하여 선택된 객체를 추적하는 프로그램 모델이다. 일련의 유사도 정보 획득 과정은 객체 감지(object detection), 사전 분류(pre-classification), 특징 추출(feature extraction), 분류(classification)의 4단계의 프로세스로 진행된다. 이는 주로 사후처리용으로 사용되던 CCTV 모니터링을 긴박한 실시간 범죄에 대응하도록 개선시켜 범죄발생 초기대응 체계를 강화 할 수 있다. 또한 관제요원의 모니터링에만 의존하는 CCTV 관제시스템을 부분 자동화하여 지자체 관제센터 운영효율성을 증대시킬 수 있다. 해당 기술 및 서비스는 안양시 테스트베드에 구축하여 시범운영할 예정으로, 서비스가 안정화가 되면 전국 지자체에 확산하여 상용화가 될 것으로 예상된다. 향후 CCTV 협업 뿐 아니라 실시간 개인 정밀위치결정, 스마트폰 연계 등 통합 방범서비스 연구가 진행되어 시민들이 보다 안전한 생활을 영위할 수 있기를 기대한다.
대부분의 자동차 사고는 졸음운전과 같은 운전자의 부주의로 인해 발생한다. 전방 추돌 경보 시스템 (FCWS)은 전방 차량으로부터 추돌 위험을 감지하여 운전자에게 사전에 경고함으로써 사고의 위험을 현저하게 줄여준다. 본 논문은 주행 안전을 위한 저전력 임베디드 기반 FCWS를 소개한다. 단일 카메라로부터 전방 차량에 대해 검출, 추적, 거리를 계산하고 현재 차량의 속도 정보를 통해 충돌시간 (TTC)을 계산한다. 또한 저성능 임베디드 시스템에서 실시간으로 동작하기 위해 높고 낮은 수준의 프로그램 최적화 기법을 소개한다. 이 시스템은 임베디드 시스템에서 사전에 취득해둔 주행 영상을 통해서 테스트 하였다. 최적화 기법을 사용한 결과는 이전에 최적화를 하지 않은 프로세스 보다 실행 시간이 약 170배 향상되었다.
본 논문은 대기 인원이 많은 혼잡한 환경에서 대기 시간이 지체되어 관리되지 않는 상황을 효율적으로 관리하는 시스템을 제안한다. 혼잡하고 긴 대기 줄은 불편하고 안전사고를 유발할 수 있다. 기존의 시스템은 단순한 하나의 영상 기반으로 대기 줄을 관리했지만, 혼잡한 상황에 다수의 카메라를 통해서 관리해야 하는 복잡한 상황에서는 적용이 어렵다. 이러한 상황에서 효율적으로 다수의 카메라로 탐지된 하나의 줄을 관리하기 위해 다수의 비전 알고리즘을 융합하여 여러 형태의 대기 줄을 정확하게 인식하는 효율적인 멀티비전 긴 대기 줄 탐지 시스템을 개발하였다. 이 줄 인식 융합 알고리즘은 다수의 카메라의 실시간 영상 데이터를 활용하여 중첩된 부분을 이어 붙여 하나의 실시간 파노라마 영상 이미지로 가공한다. 이러한 영상 데이터를 바탕으로 비전 객체 탐지, 객체 추적, 이미지 스티칭, 각도, 간격, 위치 변화량을 융합해 Queue Recognition 알고리즘을 개발하여, 많은 군중 속에서 다양한 형태의 긴 줄을 인식한다. 본 연구는 다양한 환경에서 실시간 대기 다수의 카메라로 인식된 긴 줄을 탐지하는 융합 알고리즘을 통해서 정확도 96%와 F1-score 92%로 높은 성능을 검증하였다.
비디오 감시 시스템에서 정확한 물체 추적을 위해서는 움직이는 물체가 없는 정적인 배경 영상이 필수적이다. 하지만 기존의 배경 생성 방법들은 주로 시간 축에 따른 화소 정보를 이용하여 오랫동안 정지해 있는 물체들이 존재하는 경우에는 적용하기 어려운 단점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 mean-shift와 fast marching method(FMM)을 이용해 시간 축 화소 정보와 공간 축 화소 정보를 이용하여 배경을 생성하는 방법을 제안한다. mean-shift를 이용해 시간 축에 따른 화소 값의 최빈값을 추정하여 배경을 생성하고, FMM을 이용해공간 축에 따른 화소 정보를 이용하여 일정 기간 동안 움직이지 않은 물체가 있는 환경에서 바람직한 배경을 생성한다. 실험 결과는 제안한 방법이 기존의 시간에 따른 빈도만을 이용하는 방법보다 더 효율적임을 보여준다.
배경 모델링 및 물체 검출 기술은 실시간 비디오 처리 기술에서 중요한 부분을 차지하고 있다. 그동안 많은 연구들이 진행되었지만 안정적인 성능을 위해서는 아직도 상당한 계산량을 요구한다. 이 때문에 고해상도 영상 처리나 객체 추적, 행동 분석 및 대상 인식 등의 알고리즘과 함께 사용되는 경우, 실시간 처리에 어려움이 있다. 본 논문에서는 가장 일반적으로 쓰이는 배경 모델링 기법 중의 하나인 혼합정규모델(mixtures of Gaussian)을 근사화한 효과적인 다봉(multimodal) 배경 모델링 및 물체 검출 방법을 제안한다. 근사화의 타당성과 각 과정들을 유도 및 검증하였고, 실험을 통해 제안하는 알고리즘이 기존 방법의 안정성과 유연성을 유지하면서 3배 이상의 처리 속도를 나타냄을 보였다.
본 논문에서는 중복되지 않는 서로 다른 카메라의 영상을 활용한 동일 객체 판단 및 추적 기술에 대하여 소개한다. 영상분석에서 색상 정보는 가장 기본이 되는 중요한 정보라 할 수 있다. 특히 색상 정보를 이용하는 히스토그램은 일반적으로 추적, 인식 등에 많이 사용되고 있으나 이동 객체나 조도 변화 등에 따라 성능에 차이를 보인다. 이러한 문제점을 해결하고자 본 연구에서는 동일 객체 판단을 위해 대표적으로 사용되는 히스토그램 정합의 두 알고리즘(HSV 공간에서의 Histogram matching 방법과 RGB 공간에서의MCSHR 알고리즘) 결합을 통해 분할 히스토그램은 객체를 3조각으로 나누어 전체와 각각의 히스토그램을 구하며 MCSHR을 RGB공간이 아니 Hue 공간 히스토그램으로 변경하여 유사도를 도출 하였으며 조도 변화에 강인한 모델을 만들기 위해 Controlled equalization기법을 사용하여 원 영상의 히스토그램의 확률과 평활화한 히스토그램의 확률 융합을 시도 하였다. 해당 실험의 비교 결과 기존 HSV공간에서 Histogram matching을 통한 유사도 비교보다 12.9% 향상된 정합율의 결과를 보였다. 또한 영상 정보와 스마트 기기를 통한 인식 방법의 융합을 통해 영상 내에서 동일 객체 판단에 대한 추가 정보 제공에 대해 방법론 적인 부분을 제안 하였다.
모바일 기기를 사용한 실시간 비디오 영상처리분야의 중요 객체탐색 및 추적의 문제에 있어서 난제는 복잡한 배경속에서 전경을 구분해 내는 일이다. 본 논문에서는 기계학습을 위한 특성벡터 선정의 문제를 위한 문맥인식 모델을 제시하여 잡음제거를 위한 기계학습기반의 구분자를 구현하였다. 수학적으로 NP-hard로 알려진 가장 가까운 이웃을 사용한 문맥인식 특성벡터 선정 알고리즘의 구현에 있어서, 본 논문은 연산횟수를 줄인 유사방법론에 대해 자세히 거론하였다. 또한, 문맥인식 성격을 가미한 특성벡터 선정을 통해 얻어진 특성 공간에서의 향상된 분리성에 대해 주성분 분석을 통해 엄밀한 분석결과를 제시하였다. 전반적인 성능 향상의 정도를 계측하기 위해 다양한 기계학습 방법론, 예를 들어, 다층신경망, 지원벡터기계, 나이브베이지안, 회귀분석 등을 사용해 비교결과를 제시하였다. 본 논문에서 제시한 방법론의 성능과 계산상 자원사용에 대한 내용을 결론으로 서술하였다.
열 영상은 온도에 따라 방출하는 에너지의 차이를 나타낸 영상이다. 주야간 사용이 가능하기 때문에 군사적인 용도로 많이 활용되고 있으나, 열 영상은 물체의 경계가 불명확하고 흐릿하게 표현되는 경우가 많으며 화염 등의 열기로 인해 경계부분이 변질되는 단점이 있다. 따라서, 열 영상을 이용하여 표적의 종류를 분류할 때 정확하게 분할된 경계선을 이용할 경우 효과적으로 분류 할 수 있지만, 물체의 경계가 잘못 추출되는 경우 분류의 정확도가 크게 감소한다. 본 논문에서는 이러한 단점을 극복하기 위해서 표적 영상의 분할 신뢰도에 따라 형태특징과 지역특징의 분류결과를 융합하는 계층적 분류기법을 제안하였으며, 연속 영상 기반으로 분류 결과를 갱신하는 기법을 새롭게 제안하여 차량 표적 분류 정확도를 개선하였다. 제안하는 방법은 실제 군용 표적 4종(전차, 장갑차, 상용차, 군용트럭)이 있는 다양한 자세의 열 영상 20,000장 이상을 이용하여 성능을 검증하였으며, 우수한 성능의 기존 방법 대비 정확도 개선에 효과가 있음을 확인하였다.
영상 내에서 이동하는 객체를 추출하는 전경 분리 방법은 객체의 일치 추적 및 인식에 있어서 필수적인 기술이다. 하지만 이동하는 객체 주변에 그림자가 발생하는 경우 이러한 전경 분리 방법에서는 그림자도 전경 영역으로 잘못 판단하여 분리하게 되어 이동 객체의 정확한 형태를 파악하거나 위치를 추정하기 어려운 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 색상 정보를 이용하여 그림자를 모델링하고 이를 통해 전경 영역 내의 그림자 화소를 Bayesian 분류법에 따라 제거하는 방법을 제안하였다. 특히 제안하는 방법은 매개변수 갱신 과정을 통해 그림자의 특성이 동적으로 모델링되기 때문에 주변 조명의 지속적인 변화에 적응적으로 대응할 수 있다. 실험 결과 제안하는 방법은 다양한 환경에서 그림자를 효과적으로 제거하는 것을 확인하였다.
최근 인공지능과 IoT 기술의 발달에 따라 물체 추적, 의료 영상, 객체 인식과 같은 영상처리에 대한 중요성이 높아지고 있다. 특히 전처리 과정에서 사용되는 잡음제거 기술은 시스템에서 영상의 중요성이 높아짐에 따라 잡음을 효율적으로 제거하며 세부적인 특징을 보존하는 성능을 요구하고 있다. 본 논문에서는 AWGN 환경에서 화소매칭 기반의 변형된 가중치 필터를 제안한다. 제안한 알고리즘은 영상에서 화소값이 크게 변하는 고주파성분을 보존하기 위해 화소매칭 기법을 사용하며, 주변 영역에서 연관성이 높은 패턴을 지닌 영역을 검출하여 출력계산에 필요한 매칭 화소값을 분류한다. 최종 출력은 필터링 과정에서 에지성분을 고려하기 위해 중심화소와 매칭화소 사이의 격차값 및 공간적 거리에 따라 가중치를 계산하여 구한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.