• Title/Summary/Keyword: video object

Search Result 1,061, Processing Time 0.028 seconds

Tracking of Moving Object in MPEG Compressed Domain Using Mean-Shift Algorithm (Mean-Shift 알고리즘을 이용한 MPEG2 압축 영역에서의 움직이는 객체 추적)

  • 박성모;이준환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1175-1183
    • /
    • 2004
  • This paper propose a method to trace a moving object based on the information directly obtained from MPEG-2 compressed video stream without decoding process. In the proposed method, the motion flow is constructed from the motion vectors involved in compressed video and then we calculate the amount of pan, tilt, zoom associated with camera operations using generalized Hough transform. The local object motion can be extracted from the motion flow after the compensation with the parameters related to the global camera motion. The moving object is designated initially by a user via bounding box. After then automatic tracking is performed based on the mean-shift algorithm of the motion flows of the object. The proposed method can improve the computation speed because the information is directly obtained from the MPEG-2 compressed video, but the object boundary is limited by blocks rather than pixels.

Fast Extraction of Objects of Interest from Images with Low Depth of Field

  • Kim, Chang-Ick;Park, Jung-Woo;Lee, Jae-Ho;Hwang, Jenq-Neng
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.353-362
    • /
    • 2007
  • In this paper, we propose a novel unsupervised video object extraction algorithm for individual images or image sequences with low depth of field (DOF). Low DOF is a popular photographic technique which enables the representation of the photographer's intention by giving a clear focus only on an object of interest (OOI). We first describe a fast and efficient scheme for extracting OOIs from individual low-DOF images and then extend it to deal with image sequences with low DOF in the next part. The basic algorithm unfolds into three modules. In the first module, a higher-order statistics map, which represents the spatial distribution of the high-frequency components, is obtained from an input low-DOF image. The second module locates the block-based OOI for further processing. Using the block-based OOI, the final OOI is obtained with pixel-level accuracy. We also present an algorithm to extend the extraction scheme to image sequences with low DOF. The proposed system does not require any user assistance to determine the initial OOI. This is possible due to the use of low-DOF images. The experimental results indicate that the proposed algorithm can serve as an effective tool for applications, such as 2D to 3D and photo-realistic video scene generation.

  • PDF

Haptic Rendering Algorithm for Collision Situation of Two Objects (두 객체가 충돌하는 상황에서의 햅틱 렌더링 알고리즘)

  • Kim, Seonkyu;Kim, Hyebin;Ryu, Chul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 2018
  • In this paper, we define a haptic rendering algorithm for a situation that has collision between static object and single object. We classified video scenes into four categories which can be easily seen in video sequence. The proposed algorithm can detect which frame is suitable for haptic rendering by detecting the change of direction using motion estimation and change of shape using object tracking. As a result, a total of 13 frames are extracted from the sample video and playing time of these frames were calculated. We confirmed that the haptic effect appears in expected playing time by adding the appropriate haptic generating waveform thtough the haptic editing program.

A Shadow Region Suppression Method using Intensity Projection and Converting Energy to Improve the Performance of Probabilistic Background Subtraction (확률기반 배경제거 기법의 향상을 위한 밝기 사영 및 변환에너지 기반 그림자 영역 제거 방법)

  • Hwang, Soon-Min;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • The segmentation of moving object in video sequence is a core technique of intelligent image processing system such as video surveillance, traffic monitoring and human tracking. A typical method to segment a moving region from the background is the background subtraction. The steps of background subtraction involve calculating a reference image, subtracting new frame from reference image and then thresholding the subtracted result. One of famous background modeling is Gaussian mixture model (GMM). Even though the method is known efficient and exact, GMM suffers from a problem that includes false pixels in ROI (region of interest), specifically shadow pixels. These false pixels cause fail of the post-processing tasks such as tracking and object recognition. This paper presents a method for removing false pixels included in ROT. First, we subdivide a ROI by using shape characteristics of detected objects. Then, a method is proposed to classify pixels from using histogram characteristic and comparing difference of energy that converts the color value of pixel into grayscale value, in order to estimate whether the pixels belong to moving object area or shadow area. The method is applied to real video sequence and the performance is verified.

Dynamic / Static Object Segmentation and Visual Encryption Mechanism for Storage Space Management of Image Information (영상정보의 저장 공간 관리를 위한 동적/정적 객체 분리 및 시각암호화 메커니즘)

  • Kim, Jinsu;Park, Namje
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1199-1207
    • /
    • 2019
  • Video surveillance data, which is used for preemptive or post-emptive action against any event or accident, is required for monitoring the location, but is reducing the capacity of the image data by removing intervals for cost reduction and system persistence. Such a video surveillance system is fixed in a certain position and monitors the area only within a limited angle, or monitors only the fixed area without changing the angle. At this time, the video surveillance system that is monitored only within a limited angle shows that the variation object such as the floating population shows different status in the image, and the background of the image maintains a generally constant appearance. The static objects in the image do not need to be stored in all the images, unlike the dynamic objects that must be continuously shot, and occupy a storage space other than the necessary ones. In this paper, we propose a mechanism to analyze the image, store only the small size image for the fixed background, and store it as image data only for variable objects.

Motion Compensated Video Compression based on Both Block and Object Motions (블록 이동(BMA)과 물체 이동(Object Motion)정보를 겸용한 이동 보상형 영상 압축 기법)

  • 천상훈;서강수;김재균
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.81-85
    • /
    • 1991
  • In this paper, we present a motion compensated video compression method based on both block and object motions. A simplified objectoriented motion parameter is estimated from the block based motion vectors. A decision rule for the global or local MCP modes is established. Simulation results show that the proposed method has lower bit-rates than the BMA based method at the same reconstruction errors.

Development of Real-time Video Search System Using the Intelligent Object Recognition Technology (지능형 객체 인식 기술을 이용한 실시간 동영상 검색시스템)

  • Chang, Jae-Young;Kang, Chan-Hyeok;Yoon, Jae-Min;Cho, Jae-Won;Jung, Ji-Sung;Chun, Jonghoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.85-91
    • /
    • 2020
  • Recently, video-taping equipment such as CCTV have been seeing more use for crime prevention and general safety concerns. Since these video-taping equipment operates all throughout the day, the need for security personnel is lessened, and naturally costs incurred from managing such manpower should also decrease. However, technology currently used predominantly lacks self-sufficiency when given the task of searching for a specific object in the recorded video such as a person, and has to be done manually; current security-based video equipment is insufficient in an environment where real-time information retrieval is required. In this paper, we propose a technology that uses the latest deep-learning technology and OpenCV library to quickly search for a specific person in a video; the search is based on the clothing information that is inputted by the user and transmits the result in real time. We implemented our system to automatically recognize specific human objects in real time by using the YOLO library, whilst deep learning technology is used to classify human clothes into top/bottom clothes. Colors are also detected through the OpenCV library which are then all combined to identify the requested object. The system presented in this paper not only accurately and quickly recognizes a person object with a specific clothing, but also has a potential extensibility that can be used for other types of object recognition in a video surveillance system for various purposes.

Object-based Stereoscopic Video Coding Using Image Segmentation and Prediction (영역분할 및 예측을 통한 객체기반 스테레오 동영상 부호화)

  • 권순규;배태면;한규필;정의윤;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2349-2358
    • /
    • 1999
  • Object-based stereoscopic video coding scheme is presented in this paper. In conventional BMA based stereoscopic video coding for low bit rate transmission, image prediction errors such as block artifacts and mosquito phenomena are occurred. In order to reduce these errors, object based coding scheme is adopted. The proposed scheme consists of preprocessing, object extraction, and object update procedures. The preprocessing procedure extracts non-object regions having low reliability for motion and disparity estimation. This procedure prohibits extracting inaccurate objects. For the better prediction of left channel image, the disparity information is added to the object extraction. And the proposed algorithm can reduce the accumulated error through the object update procedure that detects newly emerging objects, merges objects that have the same object-disparity and object motion, and splits object which has large image prediction error. The experimental results show that the proposed algorithms improve the quality of the prediction without block artifacts and mosquito phenomena.

  • PDF

Web-based Moving Object Tracking by Controlling Pan-Tilt Camera using Motion Detection (움직임 검출의 캠 제어에 의한 웹기반 이동 객체 추적)

  • 박천주;박희정;이재협;전병민
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.2
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, we suggest a method to acquire the moving object centered video by panning and tilting a camera automatically according to motion vectors calculated by detecting the motion of a moving object on video steam. We create a difference image by estimating the intensity difference at the grid points of neighboring frames. And we detect the motion using both horizontal projection histogram and vertical projection histogram and decide the center of motion part. Then we calculate a new direction and degree of the motion by comparing coordinates at the center of current motion and the center of previous motion. By controling the RCM using these Motion vectors, we can get video stream positioned unwire object on the center of video frame. Through the experiments, we could get a moving object centered video stream continuously arid monitor remotely by implementing sever/client architecture based on the web.

  • PDF

Content-based Rate control for Hybrid Video Transmission (혼합영상 전송을 위한 내용기반 율제어)

  • 황재정;정동수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1424-1435
    • /
    • 2000
  • A bit-rate controller that can achieve a constant bit rate when coding object-based video sequences is an important part to achieve an adaptation to bit-rate constraints, desired video quality, distribution of bits among objects, relationship between texture and shape coding, and determination of frame skip or not. Therefore we design content-based bit rate controller which will be used for relevant bit-rate control. The implementation is an extension of MPEG-4 rate control algorithm which employs a quadratic rate-quantizer model. The importance of different objects in a video is analyzed and segmented into a number of VOPs which are adaptively bit-allocated using the object-based modelling. Some test sequences are observed by a number of non-experts and interests in each object are analysed. The initial total target bit-rate for all objects is obtained by using the proposed technique. Then the total target bits are jointly analyzed for preventing from overflow or underflow of the buffer fullness. The target bits are distributed to each object in view of its importance, not only of statistical analysis such as motion vector magnitude, size of object shape, and coding distortion of previous frame. The scheme is compared with the rate controller adopted by the MPEG-4 VM8 video coder by representing their statistics and performance.

  • PDF