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In this paper, we propose a novel unsupervised video 
object extraction algorithm for individual images or image 
sequences with low depth of field (DOF). Low DOF is a 
popular photographic technique which enables the 
representation of the photographer’s intention by giving a 
clear focus only on an object of interest (OOI).  We first 
describe a fast and efficient scheme for extracting OOIs 
from individual low-DOF images and then extend it to deal 
with image sequences with low DOF in the next part. The 
basic algorithm unfolds into three modules. In the first 
module, a higher-order statistics map, which represents the 
spatial distribution of the high-frequency components, is 
obtained from an input low-DOF image. The second 
module locates the block-based OOI for further processing. 
Using the block-based OOI, the final OOI is obtained with 
pixel-level accuracy. We also present an algorithm to 
extend the extraction scheme to image sequences with low 
DOF. The proposed system does not require any user 
assistance to determine the initial OOI. This is possible due 
to the use of low-DOF images. The experimental results 
indicate that the proposed algorithm can serve as an 
effective tool for applications, such as 2D to 3D and photo-
realistic video scene generation. 
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I. Introduction 

Image segmentation is one of the most challenging problems 
in computer vision. The objective of image segmentation is to 
partition an image into homogeneous regions, where pixels share 
the same attributes, such as texture, intensity, color, or even focus 
cue. In our preceding work [1], we proposed a novel 
unsupervised segmentation algorithm for images with low depth  
of field (DOF) (see Fig. 1). Low DOF is an important 
photographic technique commonly used to assist viewers in 
understanding the depth information within a two-dimensional 
photograph [2]. Unlike typical image segmentation methods [3]-
[5], in which regions are discovered using properties of the 
intensity or texture, focus cue may play the most important role 
for the unsupervised extraction of the focused object-of-interest 
(OOI). The fact that we can effectively extract the OOI 
automatically from low-DOF images suggests a variety of 
applications, such as image indexing for content-based retrieval, 
object-based image compression, 3D microscopic image 
analysis, image enhancement for digital cameras, arbitrarily 
focused image generation from two differently focused images 
[6], range segmentation for depth estimation, 2D-to-3D 
conversion for 3D TV [7], [8], improvement of coding efficiency 
in multi-view coding [9], and fusion of multiple images which 
are focused to different degrees [10], [11]. 

Let us define f(x, y) and b(x, y) as the focused foreground and 
background, respectively. Also, we assume that an OOI lies in 
the depth of focus of the camera so the entire OOI appears 
sharp when focused, even if it is not necessarily completely 
planar. We model the low-DOF images by a linear 
combination of textures with blur functions as 

 
g(x, y) = f(x, y) + h(x, y) * b(x, y),           (1) 
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Fig. 1. Low-DOF images. 

where * indicates a 2D convolution operation, and h is a space-
invariant blur function, which is usually assumed to be the 
Gaussian function. 

As shown in (1), since the defocused region is lowpass 
filtered, high frequency components in the region are removed 
or reduced. Thus, by assuming that only sharply focused 
regions contain adequate high frequency components, it should 
be possible to distinguish the focused foregrounds from the 
defocused backgrounds by comparing the amount of the high 
frequency content. 

There have been several approaches to the extraction of 
OOIs from low-DOF images. The edge-based method 
proposed in [12] extracts the boundary of the object by 
measuring the amount of defocus at each edge pixel. The 
algorithm has demonstrated high accuracy for segmenting 
man-made objects and objects with clear boundary edges. 
However, this approach often fails to detect boundary edges of 
natural objects, yielding disconnected boundaries [2]. Region-
based segmentation algorithms [2], [13]-[15] rely on the 
detection of the high frequency areas in an image. A reasonable 
starting point is to measure the degree of focus for each pixel 
by computing the high frequency components. To this end, 
several methods have been used, such as spatial summation of 
the squared anti-Gaussian (SSAG) function [13], variance of 
wavelet coefficients in the high frequency bands [2], a multi-
scale statistical description of high frequency wavelet 
coefficients [14], local variance [15], and so on. Note that 
exploiting high frequency components alone often results in 
errors in both focused and defocused regions. In defocused 
regions, despite blurring due to defocusing, there could be busy 
texture regions in which high frequency components are still 
strong enough. These regions are prone to be misclassified as 
focused regions. Conversely, we may have focused regions 
with nearly constant gray levels, which may be misclassified as 
defocused regions. As pointed out in [2], relying only on the 
sharp detail of the OOI can be a limitation for this region-based 
DOF image segmentation approach. Furthermore, the multi-
scale approaches employed in both [2] and [14] tend to 
generate jerky boundaries, even though refinement algorithms 
for high resolution classification can be incorporated. To reduce 
the above-mentioned deficiencies, Won and others [15] 
proposed a block-based maximum a posteriori (MAP) 
segmentation algorithm. While it generates smooth boundaries 

of the segmented object, it tends to incorporate adjacent 
defocused regions into focused regions. In our preceding work 
[1], the initial detection of the high frequency areas is 
conducted by computing higher order statistics (HOS). In order 
to minimize the above mentioned misclassification due to 
solely depending on the sharp details, the obtained HOS map is 
simplified by morphological filtering which is followed by 
region merging. It is shown that the algorithm outperforms the 
existing ones when the shapes of the extracted focused regions 
are compared with those of ground truths in pixel accuracy. 
However, the use of time-consuming morphological filtering 
may become an obstacle to the extension of the algorithm to 
image sequence cases. 

In this paper, we propose an efficient and fast extraction 
scheme. The algorithm consists of two parts: A fast and efficient 
block-based scheme is proposed in the next section, which is 
followed by an extension algorithm to deal with low-DOF image 
sequences as discussed in section III. Experimental results and 
conclusions follow in section IV and V, respectively.  

II. Block-Based OOI Extraction from Low-DOF 
Images 

Since focused regions are assumed to contain high-
frequency areas, detecting such areas is the most critical step 
in ensuring successful extraction. In other words, without a 
good scheme to detect such areas, the extracted OOIs may 
not provide accurate boundary information. Finding high 
frequency areas may need to be supported by other cues to 
yield better performance. For instance, the cues may include 
some semantic assumptions such as “focused objects are 
usually located in the center of images” or “focused objects 
tend to have brighter colors compared to the defocused 
background,” and so on. 

In this section, we consider an unsupervised OOI 
segmentation algorithm, in which a focused OOI is 
automatically extracted, based on the HOS characteristics, 
from a single image with low DOF. The proposed focused OOI 
extraction algorithm consists of three modules as shown in Fig. 
2 as a block diagram. First, the color-based HOS is calculated 
for every pixel from an input low-DOF image as conducted in 
prior works [16], [17]. Second, the HOS map is converted into 
the m×n blocked HOS. Then a block-based OOI extraction is 
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Fig. 2. System block diagram for the first frame. 
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conducted, which is followed by hole detection and filling 
techniques. The last stage is a pixel-based OOI extraction 
method based on applying a filling-in technique to the located 
block-based OOI.  

1. Color-Based HOS Map Construction 

The objective of low-DOF image segmentation is to extract 
the focused OOI from an image. In the first step, we transform 
the low-DOF image into an appropriate feature space, in which 
the spatial distribution of the high frequency components is 
represented. This is conducted by computing the HOS for all 
pixels in the low-DOF image. The HOS mapping method is 
known to be well suited to solving detection and classification 
problems because it can suppress Gaussian noise and preserve 
some of the non-Gaussian information [1], [16], [18]. The 
fourth-order moments are calculated for all pixels in the red, 
green, and blue channels for the M×N input image, respectively. 
For instance, the fourth-order moment at (x, y) in a red channel 
is defined as 
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where η (x, y) is a set of neighboring pixels centered at (x, y), 
),(ˆ yxmR  is the sample mean of red channel Ired (x, y) of I(x, y), 

and ηN  is the size of η. Only the maximum moment value 
among all three channels, ),,(ˆand),,(ˆ),,(ˆ )4()4()4( yxmyxmyxm BGR   
at each pixel is used: 
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Since the dynamic range of the HOS values is extremely 
large, the value for each pixel is down-scaled such that each 
pixel takes a value from [0, 255]. The outcome is a color-based 
HOS map. The HOS map value for each pixel (x,y) is thus 
defined as 

),/),(,255min(),( original DSFyxHOSyxHOS =      (4) 

where DSF denotes the down-scaling factor to reduce the 
dynamic range, which may range from 0 to about 2.1 billion. 
For natural images, however, the maximum HOS takes values 
between 100 and 0.2 billion, and it is observed that using 
different DSF according to the maximum value yields better 
performance in the subsequent stages. Thus, the DSF is 
determined as follows: 
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Color-based HOS maps can be effectively used in the event 
that the foreground/background boundary is obscure due to 
similar gray levels. Figure 3 illustrates the color-based HOS 
map generation process. Figure 3(a) shows the input low-DOF 
image and Figs. 3(b)-(d) show HOS values for each channel. 
Figure 3(e) shows the HOS map derived from (4), considering 
all three channels. 
 

 

Fig. 3. Computing an HOS map: (a) low-DOF image, (b) HOS 
map in red channel, (c) HOS map in green channel, (d) 
HOS map in blue channel, and (e) color-based HOS map.

(a)  (b)  (c)  

(d)  (e)  

 

2. Block-Based OOI extraction  

In our prior work [1], [16], the obtained feature space, which is  
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Table 1. Average processing time for each step in our prior work [1].

384 × 256 image Processing time (ms) (%) 
HOS map 47 1.0 
HOS simplification by 
morphological filtering by 
reconstruction 

3,537 71.2 

Region merging 1,378 27.7 

Thresholding 7 0.1 

Total 4,969 100.0 

 

called a color-based HOS map, is refined by removing small 
dark holes and bright patches using a morphological closing- 
opening by reconstruction [19], that is, morphological closing by 
reconstruction followed by morphological opening by 
reconstruction. 

However, the use of the filters is responsible for the 
degradation of system performance due to the required high 
computational complexity which takes up about 71% of the 
whole processing time as shown in Table 1. Thus the process 
needs to be replaced by an efficient and fast scheme for fast 
OOI segmentation applications dealing with still images or 
even image sequences in real-time. In this section, a fast block-
based OOI extraction scheme is proposed, which is refined by 
the pixel-based OOI extraction scheme addressed in the 
following subsection. 

A. HOS Characteristics of an Image from the Low DOF 

Basically, the HOS calculation in (4) creates much higher 
values in focused regions than in defocused areas [1]. An 
original HOS computation from a low-DOF image (see Fig. 
4(a)) has an extremely large dynamic range, in which a small 
number of strong peaks are present as shown in Fig. 4(b). 
 

 

Fig. 4. HOS characteristics: (a) low-DOF image, (b) HOSoriginal
computation result, and (c) HOS map. 

(a) (b) (c) 

 

The HOS map (see Fig. 4(c)) is then used to distinguish 
focused regions from blurred background [1], [16]. However, 
as shown in Fig. 4(c), there may be unwanted bright patches 
in the background, which are removed by morphological 
filtering [1]. 

In this paper, we pay additional attention to the maximum 
(peak) values of HOSoriginal. We note that the locations of the 
maximum value can be exploited as an indication of the 
location of the OOI since it is very likely to exist in the focused 
OOI. Thus, it is reasonable to use the maximum HOS location 
as the starting point of the block-based reconstruction of the 
HOS map.  

B. Block-Based Reconstruction of the HOS Map 

In this subsection, we describe how to construct the block-
based HOS map by reconstruction without the repetitive use of 
morphological filters which was used in prior work [1], [16]. 
First of all, the HOS map is partitioned into blocks with m×n 
pixels. The maximum value of each block is determined as 
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Fig. 5. Block-based HOS map: (a) low-DOF image, (b) blocked 
HOS in which the red circle denotes the location of the 
seed point, and (c) region-of-interest (ROI) extraction 
result from the HOSblock. 

(a) (b) (c) 

 
 

The pictorial example used to obtain the HOSblock is shown 
in Fig. 5. Focused objects in low-DOF images tend to contain 
the highest HOS. The coordinate corresponding to the 
maximum HOSblock value is used as the seed-point, as indicated 
by the red circle in Fig. 5(b), to start the OOI search. 

)],([maxarg)ˆ,ˆ( original),(
yxHOSyx

yx
= ,           (6) 

⎟
⎠
⎞

⎜
⎝
⎛=

n
y

m
xvseeduseed

ˆ
(int),

ˆ
(int))_,_( .        (7) 

The reason we pay attention to the seed-point is that there 
may be two or more connected clusters of blocks in 
HOSblock(u,v) as shown in Fig. 5(b). In this case, the cluster of 
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blocks containing the seed-point is used as the initial point for 
searching the block-based OOI map. To extract blocks 
connected to this point, a depth-first-based search technique is 
exploited. Starting at the seed-point, the four neighboring 
blocks are checked to see if their values are 255. If so, the block 
is connected and the procedure is continued until no block 
having the value of 255 is found. 

Figure 5(c) shows the extracted connected blocks, which 
represent the block-based focused region. Since this initial 
block-based HOS map may contain small holes as shown in 
Fig. 5(c), a hole-filling procedure should be applied before 
proceeding to pixel-based OOI extraction. 

The hole-filling module checks whether any holes are present 
in the initial block-based HOS map, and fills any holes that are 
found. To this end, we adopt the region merging algorithm [1], 
[16], [17]. More specifically, the hole is filled if it is surrounded 
by neighboring blocks (marked in red in Fig. 6(a)) belonging to 
the extracted initial OOI. 

Since the task is block-based, the hole-filling process is fairly 
fast and effective even for larger holes. As shown in Fig. 6(b), 
the OOI with holes filled is still in a block-based shape, which 
needs to be refined in the pixel-based OOI extraction module. 
 

 

Fig. 6. ROI extraction: (a) initial OOI and (b) hole filled OOI.

(a) (b) 

 

3. Pixel-Based OOI Extraction 

The block-based OOI is now able to serve as a mask,   
which confines the final locations of the OOI inside it. Figure 
7(b) and (d) show refined HOS maps, with the removed pixels 
located outside the block-based OOI. 

The next step is to fill in the OOI, which results from the 
smooth areas inside the focused objects. This is done by using 
the filling-in technique used in our prior work [20]. The results  

 
 

Fig. 7. Refined HOS map: (a) original HOS maps, (b) refined HOS 
map with removed pixels located outside the block-based
OOI, (c) original HOS maps, and (d) refined HOS map with
removed pixels located outside the block-based OOI.

(a) (c) (b) (d) 

 

 

Fig. 8. The focused object-of-interest extraction process: (a) 
block-based ROI, (b) refined HOS map indicating OOI, 
(c) horizontally filled OOI, (d) vertically filled OOI, and 
(e) final OOI obtained by AND operation of (c) and (d).

(a) (b) 

(c) (d) (e) 

 
 
are shown in Fig. 8(c) and (d). 

The final OOI is extracted by a pixel-based AND operation 
as shown in Fig. 8(c) and (d), resulting in the final OOI, as 
shown in (e). There may still be some errors such as gulfs or 
peninsulas created at the boundaries of the object or isolated 
small false regions even though the segmented object produces 
the overall shape of the focused OOI. These errors may cause 
visual annoyance. The goal of the object post-processing step is 
to remove those errors and at the same time to smooth the 
object boundaries. Cascaded opening-closing morphological 
operations can thus be adopted to accomplish this task. The 
filtered result represents the final outcome of the proposed 
algorithm. 

III. Extension to Low-DOF Image Sequences 

In this section, we propose a scheme to extend our approach to 
deal with image sequences with low-DOF. To deal with low-
DOF video sequences, the following issues should be taken into 
account: 

• Input image sequence: The input image sequences should 
contain focused objects inside each image frame and the 
focused objects need to be well tracked throughout the 
sequence. The sequences can be captured using the low-DOF 
technique and can be used for various applications. 

• Efficiency for image sequences: As previously mentioned, the 
possible applications can go beyond those in the traditional 
computer vision areas, such as range segmentation for depth 
estimation [13] and target recognition [21]. For instance, the 
low-DOF technique assisted video object segmentation could 
expedite the practical use of content-based interactivity for a 
variety of multimedia applications. By using this method, for 
example, a bird flying in the sky can be extracted from a 
video sequence, which is never feasible using chroma-key (or 



358   Changick Kim et al. ETRI Journal, Volume 29, Number 3, June 2007 

blue screen) imaging. In such cases, one of the key factors for 
success is the reduction of computational complexity. The 
methods which use the MRF model [13], [15] are not 
suitable to handle image sequences due to their iterative 
relaxation process. An efficient deterministic method is 
critically required. 

 
In order to achieve fast and effective processing of low-

DOF image sequences, temporal redundancy needs to be 
considered. While motion information has been adopted to 
remove the temporal redundancy between consecutive image 
frames, we propose using a more efficient scheme to prompt 
the processing instead of conducting tedious motion 
estimation.  

The initial block-based OOI is obtained by expanding that 
obtained in the previous frame using. 
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where Dn(x,y) denotes the value at block position (x, y) and n 
denotes the current frame. Of course, the extent of expansion 
may be significant if the movement of the focused object 
between consecutive frames is somewhat large. The expanded 
region based on the block-based OOI from the previous frame 
is shown in Fig. 9(b). Then HOS is then computed on the 
pixels in the expanded regions and the resulting OOI can thus 
be derived on that basis for an individual image frame, as 
discussed in section II. By confining the pixels for HOS 
computation, the computational complexity and processing 
time can be greatly reduced. 
 

 

Fig. 9. Obtaining initial OOI: (a) block-based OOI at frame n-1 
and (b) OOI expanded at frame n from (a). 

(a) (b) 

 

IV. Experimental Results  

1. Experiments on Low-DOF Images 

The proposed algorithm was implemented and tested on 
low-DOF images. We used a 3×3 neighborhood for η in (2). 
Figure 10 shows some experimental results of the proposed 

algorithm. It also gives visual comparisons of outcomes from 
manual extraction with the algorithm from [1] on several test 
images. The elapsed processing time of each module 
executed for a 384×256 image is shown in Table 2. 
Compared with the speed of the previous algorithm [1] (see 
Table 1), the proposed scheme is about 19 times faster. This is 
because the time consuming morphological filtering with a 
31×31 structuring element is eliminated with this proposed 
algorithm. 

The performance of the proposed algorithm is also evaluated 
using an objective criterion. In [2], performance is evaluated in  
 

 

Fig. 10. Extracted OOI comparisons of the results in the prior 
work [1] and our proposed method: (a) low-DOF image, 
(b) ground truth from human manual extraction, (c) 
results from [1], and (d) results from the proposed 
algorithm. 

(a) (b) (c) (d) 

 
 

Table 2. Elapsed processing time of each module experimented for 
384×256 image. 

Proposed method for 384×256 image Processing time (ms) (%)

Color-based HOS map 132 50.5
Block-based OOI segmentation & 
hole detection 

3 0.9

Pixel-based OOI extraction 127 48.6

Total 262 100.0
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terms of sensitivity, specificity, and error rate. However, since 
they are defined as the ratios of the areas, the different shapes 
of extracted areas can sometimes show high performance as 
long as the size of the extracted OOI (or background) is close to 
that of the reference binary mask. 

We adopt a pixel-based quality measure [22], which is used 
to evaluate the performances of video object segmentation 
algorithms. The spatial distortion (error) of the estimated OOI 
from the reference OOI is defined as 
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where Oest and Oref
 are the estimated and reference binary masks, 

respectively, and ⊗  is the binary XOR operation. 
Table 3 shows the spatial distortion measures of the results 

from [1] and the proposed algorithm. Reference OOIs are 
extracted by manual segmentation, as shown in Fig. 10(b). For 
the binary XOR operation, the pixels of the OOI are set to one; 
otherwise, zero. As shown in Table 3, our algorithm yields quite 
low distortion values which are close to those from [1] and have 
much lower computational complexity.    
 

Table 3. Performance evaluation via mis-segmentation rate by
objective criterion. Images in Fig. 10 are numbered from
top to bottom. 

Image Ref.  [1] Proposed 
(a) 2.78% 2.79% 

(b) 2.04% 1.97% 

(c) 3.40% 3.43% 

(d) 1.42% 1.35% 

 
 

2. Experiments on Low-DOF Image Sequences 

The proposed fully automatic algorithm has been 
implemented and tested on the several low-DOF image 
sequences as well. The MPEG-4 test sequence “Bream” was 
used with the background blurred in our experiment. The 
Bream sequence is in CIF format and contains moving objects 
and background. In our simulations, the OOI is a bream fish 
swimming around. Its shape changes quite a lot throughout the 
sequence due to its non-rigid motion.  

Unlike the moving object extraction schemes based on 
object tracking [23]-[25], which require a manual selection of 
the OOI at the first frame or find the color feature by using a 
Bayes classifier [26], the proposed system does not require any 
user assistance to determine the OOI and can operate at fast 
speed. This is possible due to the use of low-DOF images. 

Throughout the image sequence, we can obtain the focused 
OOI without human intervention. The OOI extraction results 
from the sequence “Bream” with the background blurred are 
shown in Fig. 11.  

Other experimental results are shown in Figs. 12 and 13, 
where a flying bird and blooming flowers are extracted from 
natural sequences. Note that the background of the input video 
is not necessarily Gaussian blurred. As we can clearly see, 
especially in Fig. 12, sequence tracking of an OOI can be very 
effective as long as the background appears motion blurred. In 
the image sequence shown in Fig. 12, only the flying bird is 
sharply focused. This is a real benefit of extending the 
proposed algorithm for low-DOF images to image sequences. 
To deal with sequences with shot changes as shown in Fig. 13, 
the system needs to be able to detect shot boundaries. We used 
the algorithm proposed in [27], where pixels are labeled with 
respect to the evolution of their intensities on several successive 
frames. 

Table 4 shows the segmentation accuracy and spatial 
distortion rates of the proposed algorithm. For the binary XOR 
operation, pixels of the OOI are set to one; otherwise, zero. As 
shown in Table 4, our algorithm is robust regardless of the 
dynamics of motion in the scene. 

The experiments were conducted on an Intel Pentium-IV 3.4 
GHz PC. The average processing time for 352×288 sequences 
was about 0.13 seconds per frame. Table 5 shows the 
processing time of each step for both intra-frame (initial frame) 
and inter-frame, that is, the rest of the frames in the sequence. 
By confining the possible candidate area for inter-frames, even 
faster processing was attained, without degrading segmentation 
quality. 

V. Conclusion 

We developed an efficient and effective algorithm to 
automatically extract OOIs from individual images or image 
sequences captured with a low-DOF technique. Extending our 
prior work [1], a block-based scheme was adopted for faster 
processing, which is suitable for focused object extraction from 
image sequences. To track the OOI throughout a sequence, the 
previous block-based OOI is applied to exploit temporal 
redundancy between consecutive frames. The extraction is 
very fast while maintaining accurate object boundaries, even 
though the degree of speed improvement depends on the size 
of the focused object in the image.  

In our future work we will apply the proposed system to 
various multimedia applications, such as photo-realistic scene 
generation, virtual reality, immersive video systems, and so on.  
Figure 14 shows an example of such applications. Our on-going 
endeavor is to reach real-time processing on low-end PCs 
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Fig. 11. Video object planes from sequence “Bream” (total 300 frames. 1st row: 52 to 58; 3rd row: 111 to 117; 5th row: 228 to 234). 

 
 

Fig. 12. Extracted OOI from a natural sequence 1 (total 390 frames). 

 
 

Fig. 13. Extracted OOIs from natural sequence 2 (total 180 frames). 
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Table 4. Extraction accuracy in “Bream” 

Bream frames Accuracy rate
Error rate  

(spatial distortion measures)
Steady motion 94.3% 5.7% 

Rapid motion 92.2% 7.8% 

Table 5. CIF format (Bream) processing time for each step. 

Intra-frame      
Processing 
time (ms) 

Inter-frame 
Processing
time (ms)

Color-based HOS map 143 Color-based HOS map 41 
Block-based OOI 

extraction 2 
Block-based OOI 

extraction 1 

Pixel-based OOI 
extraction 83 

Pixel-based OOI 
extraction 89 

Total 228 Total 131 

 
 

 

Fig. 14. Example of photo-realistic scene generation using low-
DOF sequence: (a) OOI in the low-DOF image, (b)
natural background, and (c) OOI combined with (b). 

(a) (b) (c) 

 
 
through the reduction of processing time by code/algorithm 
optimization. 

References 

[1] C. Kim, “Segmenting a Low Depth-of-Field Image Using 
Morphological Filters and Region Merging,” IEEE Tr. on Image 
Processing, vol. 14, no. 10, Oct. 2005, pp. 1503-1511.  

[2] J.Z. Wang, J. Li, R.M. Gray, and G. Wiederhold, “Unsupervised 
Multi-Resolution Segmentation for Images with Low Depth of 
Field,” IEEE Trans. Pattern Analysis and Machine Intelligence, 
vol. 23, no.1, Jan. 2001, pp. 85-90. 

[3] P. J. Besl and R.C. Jain, “Segmentation Through Variable –Order 
Surface Fitting,” IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 10, Mar. 1988, pp. 167-192. 

[4] L. Lucchese and S.K. Mitra, “Color Image Segmentation: A State-
of-the-Art Survey: Image Processing, Vision, and Pattern 
Recognition,” Proc. of the Indian National Science Academy 
(INSA-A), vol. 67A, no. 2, Mar. 2001, pp. 207-221. 

[5] D. Comaniciu and P. Meer, “Robust Analysis of Feature Spaces: 
Color Image Segmentation,” Proc. IEEE Conf. Computer Vision 

and Pattern Recognition (CVPR'97), San Juan, Puerto Rico, 1997, 
pp. 750-755. 

[6] A. Kubota and K. Aizawa, “Reconstructing Arbitrarily Focused 
Images from Two Differently Focused Images Using Linear 
Filters,” IEEE Trans. on Image Processing, vol. 14, no. 11, Nov. 
2005, pp. 1848-1859. 

[7] W.J. Tam and L. Zhang, “3D-TV Content Generation: 2D-to-3D 
Conversion,” IEEE Int’l Conf. Multimedia and Expo 
(ICME’2006), Toronto, Canada, July 2006, pp. 1869-1872. 

[8] S. Battiato, S. Curti, E. Scordato, M. Tortora, and M. La Cascia, 
“Depth Map Generation by Image Classification,” SPIE 
Electronic Imaging, San Jose, CA, USA, Apr. 2004, pp. 95-104. 

[9] X.Wei, M.-Y.Chu, and I. Ahmad, “Lowering the Complexity of 
Multi-View Video Encoding through Dynamic Segmentation and 
Registration of Video Object,” Proc. of IEEE Int’l Conf. on Image 
Processing, Oct. 2006, pp. 549-552. 

[10] K. Aizawa, A. Kubota, and K. Kodama, “Implicit 3D Approach 
to Image Generation: Object-Based Visual Effects by Linear 
Processing of Multiple Differently Focused Images,” Proc. 10th 
Int’l Workshop on Theoretical Foundations of Computer Vision, 
Germany, Mar. 2000, pp. 226-237. 

[11] H. Li, B.S. Manjunath, and S.K. Mitra, “Multi-Sensor Image 
Fusion Using the Wavelet Transform,” Proc. Int’l. Conf. 
Computer Vision, 1993, pp. 173-182. 

[12] D.-M. Tsai and H.-J. Wang, “Segmenting Focused Objects in 
Complex Visual Images,” Pattern Recognition Letters, vol. 19, 
1998, pp. 929-949. 

[13] C. Yim and A.C. Bovik, “Multi-Resolution 3-D Range 
Segmentation Using Focused Cues,” IEEE Trans. Image 
Processing, vol. 7, no. 9, Sep. 1998, pp. 1283-1299. 

[14] Z. Ye and C.C. Lu, “Unsupervised Multiscale Focused Objects 
Detection Using Hidden Markov Tree,” Proc. Int’l Conf. 
Computer Vision: Pattern Recognition & Image Processing, 
2002 (CVPRIP '02), Durham, North Carolina, USA, Mar. 2002, 
pp. 812-815. 

[15] C.S. Won, K. Pyun, and R.M. Gray, “Automatic Object 
Segmentation in Images with Low Depth of Field,” Proc. Int’l. 
Conf. Image Processing, vol. 3, Rochester, USA, Sep. 2002, pp. 
805-808. 

[16] J. Park and C. Kim, “Extracting Focused Object from Low Depth-
of-Field Image Sequences,” Proc. SPIE Visual Communications 
and Image Processing, vol. 6077, San Jose, Jan. 2006, pp. 
607710-1–607710-8. 

[17] J. Park and C. Kim, “Performance Improvement of Object-of-
Interest Extraction from the Low Depth-of-Field Image Using 
Color-Based HOS (Higher-Order Statistics),” Korean Signal 
Processing Conf. (KSPC’05), vol. 18, no. 1, 2005, p. 109. 

[18] G. Gelle, M. Colas, and G. Delaunay, “Higher Order Statistics for 
Detection and Classification of Faulty Fanbelts Using Acoustical 
Analysis,” Proc. IEEE Signal Processing Workshop on Higher-



362   Changick Kim et al. ETRI Journal, Volume 29, Number 3, June 2007 

Order Statistics (SPW-HOS ’97), Banff, Canada, July 1997, pp. 43-
46. 

[19] J. Serra, Image Analysis and Mathematical Morphology, New York, 
Academic, 1982. 

[20] C. Kim and J. -N. Hwang, “Video Object Extraction for Object-
Oriented Applications,” J. VLSI Signal Processing Systems for 
Signal, and Video Technology, Special Issue on Multimedia Signal 
Processing, vol. 29, no. 1/2, Aug. 2001, pp. 7-21. 

[21] Y. Boykov and D. Huttenlocher, “A New Baysian Framework for 
Object Recognition,” Proc. of IEEE Computer Society Conf. 
Computer Vision and Pattern Recognition, vol. 2, June 1999, pp. 
517-523. 

[22] M. Wollborn and R. Mech, “Refined Procedure for Objective 
Evaluation of Video Generation Algorithms,” Doc. ISO/IEC 
JTC1/SC29/WG11 M3448, Mar. 1998. 

[23] J. Pan, S. Li, and Y. Zhang, “Automatic Extraction of Moving Object 
Using Multiple Features and Multiple Frames,” Proc. of IEEE Int’l 
Symp. on Circuits and Systems, vol. 1, May 2000, pp. 36-39.  

[24] C. Gu and M.C. Lee, “Semiautomatic Segmentation and Tracking 
of Semantic Video Objects,” IEEE Trans. Circuits Syst. Video 
Technol., vol. 8, no. 5, Sep. 1998, pp. 572-584. 

[25] R. Castagno, T. Ebrahimi, and M. Kunt, “Video Segmentation 
Based on Multiple Features for Interactive Multimedia 
Applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, 
no. 5, Sep. 1998, pp. 562-571. 

[26] V. Mezaris, I. Kompatsiaris, and M.G. Strintzis, “Video Object 
Segmentation Using Bayes-Based Temporal Tracking and 
Trajectory-Based Region Merging,” IEEE Trans. Circuits Syst. 
Video Technol., vol. 14, no. 6, June 2004, pp. 782-795. 

[27] Y. Taniguchi, A. Akutsu, and Y. Tonomura, “Panorama Excerpts: 
Extracting and Packing Panoramas for Video Browsing,” ACM 
Int’l Conf. Multimedia, Seattle, WA, Nov. 1997, pp. 427-436. 

 
 

Changick Kim (M’01–SM’89) received the 
BS degree in electrical engineering from Yonsei 
University, Seoul, the MS degree in electronics 
and electrical engineering from Pohang 
University of Science and Technology 
(POSTECH), Pohang, Korea, and the PhD 
degree in electrical engineering from the 

University of Washington, Seattle, in 1989, 1991, and 2000, 
respectively. From 2000 to 2005, he was a senior member of Technical 
Staff at Epson Research and Development, Inc., Palo Alto, CA. Since 
February 2005, he has been with the School of Engineering, 
Information and Communications University (ICU), Daejeon, Korea, 
where he is currently an assistant professor. His research interests 
include multimedia communications, 3-D video processing, 
image/video understanding, intelligent media processing, and advanced 
video coding for IPTV. 

Jungwoo Park received the BS degree in 
information and communication engineering 
from Sungkyunkwan University, Seoul, in 2003, 
and the MS degree in the School of Engineering 
from Information and Communications 
University (ICU), Daejeon, Korea, in 2006. He 
currently works for the Corporate Technology 

Operations in Samsung Electronics, as an assistant engineer. His 
research interests include image/video understanding, computer 
graphics, and 3-D simulation for CAE. 
 

Jaeho Lee received the BS degree in electronic, 
electrical and communication engineering from 
Pusan National University, Korea, in 2006. He 
is currently associated with the Visual 
Information Processing Laboratory at the 
Information and Communications University 
(ICU), where he is pursuing the MS degree. His 

research interests include object segmentation, virtual view generation, 
and 3D multimedia processing. 
 

Jenq-Neng Hwang received his BS and MS 
degrees from National Taiwan University, and 
his PhD from the University of Southern 
California. In 1989, he joined the EE 
Department of the University of Washington, 
where he is currently a professor. He served as 
the Associate Chair of the EE Department from 

2003 to 2005. He has published more than 200 journal papers, 
conference papers, and book chapters in the areas of multimedia signal 
processing (MMSP) and networking, neural networks signal 
processing (NNSP), and machine learning. He received the 1995 
Annual Best Paper Award from the IEEE Signal Processing Society 
(SPS). Dr. Hwang is a fellow of IEEE. He is a founding member of 
MMSP Technical Committee of IEEE SPS. He served as the 
Chairman of the NNSP Technical Committee in IEEE SPS, and was 
the Society's representative to IEEE NNC. He served as an associate 
editor for IEEE T-SP and T-NN, and is now an associate editor for 
IEEE T-CSVT and an editor for the Journal of Information Science 
and Engineering. He was the conference Program Chair of the 1994 
IEEE Workshop on NNSP, the General Co-Chair of the 1995 
International Symposium on Artificial Neural Networks, the Tutorial-
Chair of 1996 IEEE International Conference on Neural Networks 
(ICNN), the Program Co-Chair of I998 IEEE International Conference 
on Acoustics, Speech, and Signal Processing (ICASSP), and the Chair 
of the 2006 IASTED conferences on Signal and Image Processing 
(SIP), as well as Internet Multimedia Systems and Applications 
(IMSA). 


