• Title/Summary/Keyword: video dehazing

Search Result 3, Processing Time 0.022 seconds

An efficient Video Dehazing Algorithm Based on Spectral Clustering

  • Zhao, Fan;Yao, Zao;Song, Xiaofang;Yao, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3239-3267
    • /
    • 2018
  • Image and video dehazing is a popular topic in the field of computer vision and digital image processing. A fast, optimized dehazing algorithm was recently proposed that enhances contrast and reduces flickering artifacts in a dehazed video sequence by minimizing a cost function that makes transmission values spatially and temporally coherent. However, its fixed-size block partitioning leads to block effects. The temporal cost function also suffers from the temporal non-coherence of newly appearing objects in a scene. Further, the weak edges in a hazy image are not addressed. Hence, a video dehazing algorithm based on well designed spectral clustering is proposed. To avoid block artifacts, the spectral clustering is customized to segment static scenes to ensure the same target has the same transmission value. Assuming that edge images dehazed with optimized transmission values have richer detail than before restoration, an edge intensity function is added to the spatial consistency cost model. Atmospheric light is estimated using a modified quadtree search. Different temporal transmission models are established for newly appearing objects, static backgrounds, and moving objects. The experimental results demonstrate that the new method provides higher dehazing quality and lower time complexity than the previous technique.

An Efficient Video Dehazing to Without Flickering Artifacts (비디오에서 플리커 현상이 없는 효율적인 안개제거)

  • Kim, Young Min;Park, Ki Tae;Lee, Dong Seok;Choi, Wonju;Moon, Young Shik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.51-57
    • /
    • 2014
  • In this paper, we propose a novel method to effectively eliminate flickering artifacts caused by dehazing in video sequences. When applying a dehazing technique directly to each image in a video sequence, flicker artifacts may occur because atmospheric values are calculated without considering the relation of adjacent frames. Although some existing methods reduce flickering artifacts by calculating highly correlated transmission values between adjacent frames, flickering artifacts may still occur. Therefore, in order to effectively reduce flickering artifacts, we propose a novel approach considering temporal averages of atmospheric light values calculated from adjacent frames. Experimental results have shown that the proposed method achieves better performance of video dehazing with less flickering artifact than existing methods.

A LabVIEW-based Video Dehazing using Dark Channel Prior (Dark Channel Prior을 이용한 LabVIEW 기반의 동영상 안개제거)

  • Roh, Chang Su;Kim, Yeon Gyo;Chong, Ui Pil
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.101-107
    • /
    • 2017
  • LabVIEW coding for video dehazing was developed. The dark channel prior proposed by K. He was applied to remove fog based on a single image, and K. B. Gibson's median dark channel prior was applied, and implemented in LabVIEW. In other words, we improved the image processing speed by converting the existing fog removal algorithm, dark channel prior, to the LabVIEW system. As a result, we have developed a real-time fog removal system that can be commercialized. Although the existing algorithm has been utilized, since the performance has been verified real - time, it will be highly applicable in academic and industrial fields. In addition, fog removal is performed not only in the entire image but also in the selected area of the partial region. As an application example, we have developed a system that acquires clear video from the long distance by connecting a laptop equipped with LabVIEW SW that was developed in this paper to a 100~300 times zoom telescope.