• Title/Summary/Keyword: video compression standard

Search Result 172, Processing Time 0.029 seconds

Performance Analysis of Future Video Coding (FVC) Standard Technology

  • Choi, Young-Ju;Kim, Ji-Hae;Lee, Jong-Hyeok;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.73-78
    • /
    • 2017
  • The Future Video Coding (FVC) is a new state of the art video compression standard that is going to standardize, as the next generation of High Efficiency Video Coding (HEVC) standard. The FVC standard applies newly designed block structure, which is called quadtree plus binary tree (QTBT) to improve the coding efficiency. Also, intra and inter prediction parts were changed to improve the coding performance when comparing to the previous coding standard such as HEVC and H.264/AVC. Experimental results shows that we are able to achieve the average BD-rate reduction of 25.46%, 38.00% and 35.78% for Y, U and V, respectively. In terms of complexity, the FVC takes about 14 times longer than the consumed time of HEVC encoder.

Performance Comparison of HEVC and H.264/AVC Standards in Broadcasting Environments

  • Dissanayake, Maheshi B.;Abeyrathna, Dilanga L.B.
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.483-494
    • /
    • 2015
  • High Efficiency Video Coding (HEVC) is the most recent video codec standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goal of this newly introduced standard is for catering to high-resolution video in low bandwidth environments with a higher compression ratio. This paper provides a performance comparison between HEVC and H.264/AVC video compression standards in terms of objective quality, delay, and complexity in the broadcasting environment. The experimental investigation was carried out using six test sequences in the random access configuration of the HEVC test model (HM), the HEVC reference software. This was also carried out in similar configuration settings of the Joint Scalable Video Module (JSVM), the official scalable H.264/AVC reference implementation, running on a single layer mode. According to the results obtained, the HM achieves more than double the compression ratio compared to that of JSVM and delivers the same video quality at half the bitrate. Yet, the HM encodes two times slower (at most) than JSVM. Hence, it can be concluded that the application scenarios of HM and JSVM should be judiciously selected considering the availability of system resources. For instance, HM is not suitable for low delay applications, but it can be used effectively in low bandwidth environments.

A Review on Motion Estimation and Compensation for Versatile Video Coding Technology (VVC)

  • Choi, Young-Ju;Kim, Byung-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.7
    • /
    • pp.770-779
    • /
    • 2019
  • Video coding technologies are progressively becoming more efficient and complex. The Versatile Video Coding (VVC) is a new state-of-the art video compression standard that is going to be a standard, as the next generation of High Efficiency Video Coding (HEVC) standard. To explore the future video coding technologies beyond the HEVC, numerous efficient methods have been adopted by the Joint Video Exploration Team (JVET). Since then, the next generation video coding standard named as VVC and its software model called VVC Test Model (VTM) have emerged. In this paper, several important coding features for motion estimation and motion compensation in the VVC standard is introduced and analyzed in terms of the performance. Improved coding tools introduced for ME and MC in VVC, can achieve much better and good balance between coding efficiency and coding complexity compared with the HEVC.

Neural Network based Video Coding in JVET

  • Choi, Kiho
    • Journal of Broadcast Engineering
    • /
    • v.27 no.7
    • /
    • pp.1021-1033
    • /
    • 2022
  • After the Versatile Video Coding (VVC)/H.266 standard was completed, the Joint Video Exploration Team (JVET) began to investigate new technologies that could significantly increase coding gain for the next generation video coding standard. One direction is to investigate signal processing based tools, while the other is to investigate Neural Network based technology. Neural Network based Video Coding (NNVC) has not been studied previously, and this is the first trial of such an approach in the standard group. After two years of research, JVET produced the first common software called Neural Compression Software (NCS) with two NN-based in-loop filtering tools at the 27th meeting and began to maintain NN-based technologies for the common experiment. The coding performances of the two filters in NCS-1.0 are shown to be 8.71% and 9.44% on average in a random access scenario, respectively. All the material related to NCS can be found in the repository of the JVET. In this paper, we provide a brief overview and review of the NNVC activity studied in JVET in order to provide trend and insight for the new direction of video coding standard.

Design of Sub-pixel Interpolation Circuit for Real-time Multi-decoder Supporting 4K-UHD Video Images (4K-UHD 영상을 지원하는 실시간 통합 복호기용 부화소 보간 회로 설계)

  • Lee, Sujung;Cho, Kyeongsoon
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • This paper proposes the design of sub-pixel interpolation circuit for real-time multi-decoder supporting 4K-UHD video images. The proposed sub-pixel interpolation circuit supports H.264, MPEG-4, VC-1 and new video compression standard HEVC. The common part of the interpolation algorithm used in each video compression standard is shared to reduce the circuit size. An intermediate buffer is effectively used to reduce the circuit size and optimize the performance. The proposed sub-pixel interpolation circuit was synthesised by using 130nm standard cell library. The synthesized gate-level circuit consists of 122,564 gates and processes 35~86 image frames per second for 4K-UHD video at the maximum operation frequency of 200MHz. Therefore, the proposed circuit can process 4K-UHD video in real time.

A Study on the Video Compression Pre-processing Method for Video Transmission and Target Detection in Ultra-narrowband Environment (초협대역 환경에서 영상전송 및 표적탐지를 위한 영상압축 전처리 방법에 대한 연구)

  • Im, Byungwook;Baek, Seungho;Jun, Kinam;Kim, Dokyoung;Jung, Juhyun;Kim, Daesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.28-36
    • /
    • 2020
  • Due to the continued demand for high-definition video, video compression technology is steadily developing and the High Efficiency Video Coding standard was established in 2013. However, despite the development of this compression technology, it is very difficult to smoothly transmit VGA-level videos in Ultra-narrowband environments. In this paper, the target information preprocessing algorithm is presented for smooth transmission of target images moving in forest or open-terrain in Ultra-narrowband environment. In addition, for algorithm verification, the target information preprocessing algorithm was simulated and the simulated results were compared with the video compression result without the algorithm being applied.

Constant Quality Motion Compensated Temporal Filtering Video Compression using Multi-block size Motion Estimation and SPECK (다중 블록 크기의 움직임 예측과 SPECK을 이용한 고정 화질 움직임 보상 시간영역 필터링 동영상 압축)

  • Park Sang-Ju
    • Journal of Broadcast Engineering
    • /
    • v.11 no.2 s.31
    • /
    • pp.153-163
    • /
    • 2006
  • We propose a new video compression method based on MCTF(motion compensated temporal filtering) with constant quality. SPECK is an efficient image compression coding method of encoding DWT coefficients. Especially SPECK method is very efficient for coding the motion compensated residual image which usually has larger amounts of high frequency components than the natural images. And proposed multi block size hierarchical motion estimation technique is more efficient than classical block matching algorithm with fixed block size both in estimation precision and operation costs. Proposed video method based on MCTF video compression can also support multi-frame rate decoding with reasonable complexity. Simulation results showed that proposed method outperforms H.263 video compression standard.

Computer generated hologram compression using video coding techniques (비디오 코딩 기술을 이용한 컴퓨터 형성 홀로그램 압축)

  • Lee, Seung-Hyun;Park, Min-Sun
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.767-774
    • /
    • 2005
  • In this paper, we propose an efficient coding method of digital hologram using standard compression tools for video images. At first, we convert fringe patterns into video data using a principle of CGH(Computer Generated Hologram), and then encode it. In this research, we propose a compression algorithm is made up of various method such as pre-processing for transform, local segmentation with global information of object image, frequency transform for coding, scanning to make fringe to video stream, classification of coefficients, and hybrid video coding. The proposed algorithm illustrated that it have better properties for reconstruction and compression rate than the previous methods.

  • PDF

Standardization Trends in Video Coding for Machines (기계를 위한 비디오 부호화 표준화 동향)

  • Kwon, H.J.;Cheong, S.Y.;Choi, J.S.;Lee, T.J.;Seo, J.I.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.102-111
    • /
    • 2020
  • An increase in high-quality video service continually leads to the standardization of high-performance video codecs such as the versatile video coding standard. Although such codecs have improved coding efficiency in terms of high fidelity, a tremendous increase in the amount of video data is required for more efficient compression, especially for efficiently recognizing and analyzing the target within the millions of objects/events captured every day, such as those by surveillance systems. Therefore, newly established MPEG standardization efforts have studied the new generation of video compression standards for machine vision-oriented video. This paper presents the standardization trends in video coding for machines and discusses further directions for improvement.

High-Speed Intra Prediction VLSI Implementation for HEVC (HEVC 용 고속 인트라 예측 VLSI 구현)

  • Jo, Hyeonsu;Hong, Youpyo;Jang, Hanbeyoul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1502-1506
    • /
    • 2016
  • HEVC (High Efficiency Video Coding) is a recently proposed video compression standard that has a two times greater coding efficiency than previous video compression standards. The key factors of high compression performance and increasement of computational complexity are the various types of block partitions and modes of intra prediction in HEVC. This paper presents an intra prediction hardware architecture for HEVC utilizing pipelining and interleaving techniques to increase the efficiency and performance while reducing the requirement for hardware resources.