• Title/Summary/Keyword: video action recognition

Search Result 65, Processing Time 0.024 seconds

Recognition of Occupants' Cold Discomfort-Related Actions for Energy-Efficient Buildings

  • Song, Kwonsik;Kang, Kyubyung;Min, Byung-Cheol
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.426-432
    • /
    • 2022
  • HVAC systems play a critical role in reducing energy consumption in buildings. Integrating occupants' thermal comfort evaluation into HVAC control strategies is believed to reduce building energy consumption while minimizing their thermal discomfort. Advanced technologies, such as visual sensors and deep learning, enable the recognition of occupants' discomfort-related actions, thus making it possible to estimate their thermal discomfort. Unfortunately, it remains unclear how accurate a deep learning-based classifier is to recognize occupants' discomfort-related actions in a working environment. Therefore, this research evaluates the classification performance of occupants' discomfort-related actions while sitting at a computer desk. To achieve this objective, this study collected RGB video data on nine college students' cold discomfort-related actions and then trained a deep learning-based classifier using the collected data. The classification results are threefold. First, the trained classifier has an average accuracy of 93.9% for classifying six cold discomfort-related actions. Second, each discomfort-related action is recognized with more than 85% accuracy. Third, classification errors are mostly observed among similar discomfort-related actions. These results indicate that using human action data will enable facility managers to estimate occupants' thermal discomfort and, in turn, adjust the operational settings of HVAC systems to improve the energy efficiency of buildings in conjunction with their thermal comfort levels.

  • PDF

Abnormal Situation Detection on Surveillance Video Using Object Detection and Action Recognition (객체 탐지와 행동인식을 이용한 영상내의 비정상적인 상황 탐지 네트워크)

  • Kim, Jeong-Hun;Choi, Jong-Hyeok;Park, Young-Ho;Nasridinov, Aziz
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.186-198
    • /
    • 2021
  • Security control using surveillance cameras is established when people observe all surveillance videos directly. However, this task is labor-intensive and it is difficult to detect all abnormal situations. In this paper, we propose a deep neural network model, called AT-Net, that automatically detects abnormal situations in the surveillance video, and introduces an automatic video surveillance system developed based on this network model. In particular, AT-Net alleviates the ambiguity of existing abnormal situation detection methods by mapping features representing relationships between people and objects in surveillance video to the new tensor structure based on sparse coding. Through experiments on actual surveillance videos, AT-Net achieved an F1-score of about 89%, and improved abnormal situation detection performance by more than 25% compared to existing methods.

Development of a Real-time Action Recognition-Based Child Behavior Analysis Service System (실시간 행동인식 기반 아동 행동분석 서비스 시스템 개발)

  • Chimin Oh;Seonwoo Kim;Jeongmin Park;Injang Jo;Jaein Kim;Chilwoo Lee
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.68-84
    • /
    • 2024
  • This paper describes the development of a system and algorithms for high-quality welfare services by recognizing behavior development indicators (activity, sociability, danger) in children aged 0 to 2 years old using action recognition technology. Action recognition targeted 11 behaviors from lying down in 0-year-olds to jumping in 2-year-olds, using data directly obtained from actual videos provided for research purposes by three nurseries in the Gwangju and Jeonnam regions. A dataset of 1,867 actions from 425 clip videos was built for these 11 behaviors, achieving an average recognition accuracy of 97.4%. Additionally, for real-world application, the Edge Video Analyzer (EVA), a behavior analysis device, was developed and implemented with a region-specific random frame selection-based PoseC3D algorithm, capable of recognizing actions in real-time for up to 30 people in four-channel videos. The developed system was installed in three nurseries, tested by ten childcare teachers over a month, and evaluated through surveys, resulting in a perceived accuracy of 91 points and a service satisfaction score of 94 points.

A Study on Recognition of Dangerous Behaviors using Privacy Protection Video in Single-person Household Environments

  • Lim, ChaeHyun;Kim, Myung Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.47-54
    • /
    • 2022
  • Recently, with the development of deep learning technology, research on recognizing human behavior is in progress. In this paper, a study was conducted to recognize risky behaviors that may occur in a single-person household environment using deep learning technology. Due to the nature of single-person households, personal privacy protection is necessary. In this paper, we recognize human dangerous behavior in privacy protection video with Gaussian blur filters for privacy protection of individuals. The dangerous behavior recognition method uses the YOLOv5 model to detect and preprocess human object from video, and then uses it as an input value for the behavior recognition model to recognize dangerous behavior. The experiments used ResNet3D, I3D, and SlowFast models, and the experimental results show that the SlowFast model achieved the highest accuracy of 95.7% in privacy-protected video. Through this, it is possible to recognize human dangerous behavior in a single-person household environment while protecting individual privacy.

Using a Multi-Faced Technique SPFACS Video Object Design Analysis of The AAM Algorithm Applies Smile Detection (다면기법 SPFACS 영상객체를 이용한 AAM 알고리즘 적용 미소검출 설계 분석)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.99-112
    • /
    • 2015
  • Digital imaging technology has advanced beyond the limits of the multimedia industry IT convergence, and to develop a complex industry, particularly in the field of object recognition, face smart-phones associated with various Application technology are being actively researched. Recently, face recognition technology is evolving into an intelligent object recognition through image recognition technology, detection technology, the detection object recognition through image recognition processing techniques applied technology is applied to the IP camera through the 3D image object recognition technology Face Recognition been actively studied. In this paper, we first look at the essential human factor, technical factors and trends about the technology of the human object recognition based SPFACS(Smile Progress Facial Action Coding System)study measures the smile detection technology recognizes multi-faceted object recognition. Study Method: 1)Human cognitive skills necessary to analyze the 3D object imaging system was designed. 2)3D object recognition, face detection parameter identification and optimal measurement method using the AAM algorithm inside the proposals and 3)Face recognition objects (Face recognition Technology) to apply the result to the recognition of the person's teeth area detecting expression recognition demonstrated by the effect of extracting the feature points.

Bio-mimetic Recognition of Action Sequence using Unsupervised Learning (비지도 학습을 이용한 생체 모방 동작 인지 기반의 동작 순서 인식)

  • Kim, Jin Ok
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.9-20
    • /
    • 2014
  • Making good predictions about the outcome of one's actions would seem to be essential in the context of social interaction and decision-making. This paper proposes a computational model for learning articulated motion patterns for action recognition, which mimics biological-inspired visual perception processing of human brain. Developed model of cortical architecture for the unsupervised learning of motion sequence, builds upon neurophysiological knowledge about the cortical sites such as IT, MT, STS and specific neuronal representation which contribute to articulated motion perception. Experiments show how the model automatically selects significant motion patterns as well as meaningful static snapshot categories from continuous video input. Such key poses correspond to articulated postures which are utilized in probing the trained network to impose implied motion perception from static views. We also present how sequence selective representations are learned in STS by fusing snapshot and motion input and how learned feedback connections enable making predictions about future input sequence. Network simulations demonstrate the computational capacity of the proposed model for motion recognition.

ASM Algorithm Applid to Image Object spFACS Study on Face Recognition (영상객체 spFACS ASM 알고리즘을 적용한 얼굴인식에 관한 연구)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.1-12
    • /
    • 2016
  • Digital imaging technology has developed into a state-of-the-art IT convergence, composite industry beyond the limits of the multimedia industry, especially in the field of smart object recognition, face - Application developed various techniques have been actively studied in conjunction with the phone. Recently, face recognition technology through the object recognition technology and evolved into intelligent video detection recognition technology, image recognition technology object detection recognition process applies to skills through is applied to the IP camera, the image object recognition technology with face recognition and active research have. In this paper, we first propose the necessary technical elements of the human factor technology trends and look at the human object recognition based spFACS (Smile Progress Facial Action Coding System) for detecting smiles study plan of the image recognition technology recognizes objects. Study scheme 1). ASM algorithm. By suggesting ways to effectively evaluate psychological research skills through the image object 2). By applying the result via the face recognition object to the tooth area it is detected in accordance with the recognized facial expression recognition of a person demonstrated the effect of extracting the feature points.

Recognizing the Direction of Action using Generalized 4D Features (일반화된 4차원 특징을 이용한 행동 방향 인식)

  • Kim, Sun-Jung;Kim, Soo-Wan;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.518-528
    • /
    • 2014
  • In this paper, we propose a method to recognize the action direction of human by developing 4D space-time (4D-ST, [x,y,z,t]) features. For this, we propose 4D space-time interest points (4D-STIPs, [x,y,z,t]) which are extracted using 3D space (3D-S, [x,y,z]) volumes reconstructed from images of a finite number of different views. Since the proposed features are constructed using volumetric information, the features for arbitrary 2D space (2D-S, [x,y]) viewpoint can be generated by projecting the 3D-S volumes and 4D-STIPs on corresponding image planes in training step. We can recognize the directions of actors in the test video since our training sets, which are projections of 3D-S volumes and 4D-STIPs to various image planes, contain the direction information. The process for recognizing action direction is divided into two steps, firstly we recognize the class of actions and then recognize the action direction using direction information. For the action and direction of action recognition, with the projected 3D-S volumes and 4D-STIPs we construct motion history images (MHIs) and non-motion history images (NMHIs) which encode the moving and non-moving parts of an action respectively. For the action recognition, features are trained by support vector data description (SVDD) according to the action class and recognized by support vector domain density description (SVDDD). For the action direction recognition after recognizing actions, each actions are trained using SVDD according to the direction class and then recognized by SVDDD. In experiments, we train the models using 3D-S volumes from INRIA Xmas Motion Acquisition Sequences (IXMAS) dataset and recognize action direction by constructing a new SNU dataset made for evaluating the action direction recognition.

Fall Situation Recognition by Body Centerline Detection using Deep Learning

  • Kim, Dong-hyeon;Lee, Dong-seok;Kwon, Soon-kak
    • Journal of Multimedia Information System
    • /
    • v.7 no.4
    • /
    • pp.257-262
    • /
    • 2020
  • In this paper, a method of detecting the emergency situations such as body fall is proposed by using color images. We detect body areas and key parts of a body through a pre-learned Mask R-CNN in the images captured by a camera. Then we find the centerline of the body through the joint points of both shoulders and feet. Also, we calculate an angle to the center line and then calculate the amount of change in the angle per hour. If the angle change is more than a certain value, then it is decided as a suspected fall. Also, if the suspected fall state persists for more than a certain frame, then it is determined as a fall situation. Simulation results show that the proposed method can detect body fall situation accurately.

Development of a Vision Based Fall Detection System For Healthcare (헬스케어를 위한 영상기반 기절동작 인식시스템 개발)

  • So, In-Mi;Kang, Sun-Kyung;Kim, Young-Un;Lee, Chi-Geun;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.279-287
    • /
    • 2006
  • This paper proposes a method to detect fall action by using stereo images to recognize emergency situation. It uses 3D information to extract the visual information for learning and testing. It uses HMM(Hidden Markov Model) as a recognition algorithm. The proposed system extracts background images from two camera images. It extracts a moving object from input video sequence by using the difference between input image and background image. After that, it finds the bounding rectangle of the moving object and extracts 3D information by using calibration data of the two cameras. We experimented to the recognition rate of fall action with the variation of rectangle width and height and that of 3D location of the rectangle center point. Experimental results show that the variation of 3D location of the center point achieves the higher recognition rate than the variation of width and height.

  • PDF