• Title/Summary/Keyword: video CODEC

Search Result 315, Processing Time 0.024 seconds

Privacy-Preserving H.264 Video Encryption Scheme

  • Choi, Su-Gil;Han, Jong-Wook;Cho, Hyun-Sook
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.935-944
    • /
    • 2011
  • As a growing number of individuals are exposed to surveillance cameras, the need to prevent captured videos from being used inappropriately has increased. Privacy-related information can be protected through video encryption during transmission or storage, and several algorithms have been proposed for such purposes. However, the simple way of evaluating the security by counting the number of brute-force trials is not proper for measuring the security of video encryption algorithms, considering that attackers can devise specially crafted attacks for specific purposes by exploiting the characteristics of the target video codec. In this paper, we introduce a new attack for recovering contour information from encrypted H.264 video. The attack can thus be used to extract face outlines for the purpose of personal identification. We analyze the security of previous video encryption schemes against the proposed attack and show that the security of these schemes is lower than expected in terms of privacy protection. To enhance security, an advanced block shuffling method is proposed, an analysis of which shows that it is more secure than the previous method and can be an improvement against the proposed attack.

Efficient Bitrate Control Scheme for Scalable Video Codec (Scalable Video Codec을 위한 효율적인 비트율 제어기법)

  • Park Nae-Ri;Jeon Dong-San;Kim Jae-Gon;Han Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.10 no.4 s.29
    • /
    • pp.488-504
    • /
    • 2005
  • In this paper, we propose a new bitrate control scheme to improve the quality of image encoded by SVC and to resolve the problems of conventional scheme. In JSVM2.0, bitrate of a frame is controlled by an initial quantization parameter and scaling factor that it hasdifferent value according to frame. Itis difficult to get the best of video quality at arbitrary bitrate because the conventional scheme has two defects. One is that we have to know proper initial QP's fur all sequences. Another is that QP's control skill for macroblocks is very inefficient. In this paper, we propose an efficient bit allocation algorithm to reduce the effect of the initial QP and to increase the efficiency of bit allocation by using proper QP's for macroblocks. In simulation results, it can be seen that using the proposed scheme enables the SVC encoder to control the bitrate by the macroblock unit and outperforms the conventional schemes in the respect of rate-distortion.

High-Performance Architecture of 4×4/8×8 DCT and Quantization Circuit for Unified Video CODEC (통합 비디오 코덱을 위한 4×4/8×8 DCT와 양자화 회로의 고성능 구조)

  • Lee, Seon-Young;Cho, Kyeong-Soon
    • The KIPS Transactions:PartA
    • /
    • v.18A no.2
    • /
    • pp.39-44
    • /
    • 2011
  • This paper proposes the new high-performance circuit architecture of the transform and quantization for unified video CODEC. The proposed architecture can be applied to all kinds of transforms and quantizations for the video compression standards such as JPEG, MPEG-1/2/4, H.264 and VC-1. We defined the permutation matrices to reorder the transform matrix of the $8{\times}8$ DCT and partitioned the reordered $8{\times}8$ transform matrix into four $4{\times}4$ sub-matrices. The $8{\times}8$ DCT is performed by repeating the $4{\times}4$ DCT's based on the reordered and partitioned transform matrices. Since our circuit accepts the transform coefficients from the users, it can be extended very easily to cover any kind of DCT-based transforms for future standards. The multipliers in the DCT circuit are shared by the quantization circuit in order to minimize the circuit size. The quantization circuit is merged into the DCT circuit without any significant increase of circuit resources and processing time. We described the proposed DCT and quantization circuit at RTL, and verified its operation on FPGA board.

Performance Comparison of HEVC and H.264/AVC Standards in Broadcasting Environments

  • Dissanayake, Maheshi B.;Abeyrathna, Dilanga L.B.
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.483-494
    • /
    • 2015
  • High Efficiency Video Coding (HEVC) is the most recent video codec standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goal of this newly introduced standard is for catering to high-resolution video in low bandwidth environments with a higher compression ratio. This paper provides a performance comparison between HEVC and H.264/AVC video compression standards in terms of objective quality, delay, and complexity in the broadcasting environment. The experimental investigation was carried out using six test sequences in the random access configuration of the HEVC test model (HM), the HEVC reference software. This was also carried out in similar configuration settings of the Joint Scalable Video Module (JSVM), the official scalable H.264/AVC reference implementation, running on a single layer mode. According to the results obtained, the HM achieves more than double the compression ratio compared to that of JSVM and delivers the same video quality at half the bitrate. Yet, the HM encodes two times slower (at most) than JSVM. Hence, it can be concluded that the application scenarios of HM and JSVM should be judiciously selected considering the availability of system resources. For instance, HM is not suitable for low delay applications, but it can be used effectively in low bandwidth environments.

Study on Performance Improvement of Video in the H.264 Codec (H.264 코덱에서 동영상 성능개선 연구)

  • Bong, Jeong-Sik;Jeon, Joon-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.532-535
    • /
    • 2005
  • These days, many image processing techniques have been studied for effective image compression. Among those, 2D image filtering is widely used for 2D image processing. The 2D image filtering can be implemented by performing ID linear filtering separately in the direction of horizontal and vertical. Efficiency of image compression depends on what filtering method is used. Generally, circular convolution is widely used in the 2D image filtering for image processing. However it doesn't consider correlations at the region of image boundary, therefore filtering can not be performed effectively. To solve this problem. I proposed new convolution technique using Symmetric-Mirroring convolution, satisfying the 'alias-free' and 'error-free' requirement in the reconstructed image. This method could provide more effective performance than former compression methods. Because it used very high correlative data when performed at the boundary region. In this paper, pre-processing filtering in H.264 codec was adopted to analyze efficiency of proposed filtering technique, and the simulator developed by Matlab language was used to examine the performance of the proposed method.

  • PDF

Distortion Measurement based Dynamic Packet Scheduling of Video Stream over IEEE 802.11e WLANs

  • Wu, Minghu;Chen, Rui;Zhou, Shangli;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2793-2803
    • /
    • 2013
  • In H.264, three different data partition types are used, which have unequal importance to the reconstructed video quality. To improve the performance of H.264 video streaming transmission over IEEE 802.11e Wireless Local Area Networks, a prioritization mechanism that categorizes different partition types to different priority classes according to the calculated distortion within one Group of Pictures. In the proposed scheme, video streams have been encoded based on the H.264 codec with its data partition enabled. The dynamic scheduling scheme based on Enhanced Distributed Channel Access has been configured to differentiate the data partitions according to their distortion impact and the queue utilization ratio. Simulation results show that the proposed scheme improves the received video quality by 1dB in PSNR compared with the existing Enhanced Distributed Channel Access static mapping scheme.

Stereoscopic Video Coding for Subway Accident Monitoring System (지하철 사고 감시를 위한 스테레오 비디오 부호화 기법)

  • Oh, Seh-Chan;Kim, Gil-Dong;Park, Sung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.484-486
    • /
    • 2005
  • Passenger safety is a primary concern of railway system but, it has been urgent issue that dozens of people are killed every year when they falloff from train platforms. Recently, advancements in IT have enabled applying vision sensors to railway environments, such as CCTV and stereo camera sensors. In this paper, we propose a stereoscopic video coding scheme for subway accident monitoring system. The proposed scheme is designed for providing flexible video among various displays, such as control center, station employees and train driver. We uses MPEG-2 standard for coding the left-view sequence and IBMDC for predicting the P- and B-types of frames of the right-view sequence. IBMDC predicts matching block by interpolating both motion and disparity predicted macroblocks. To provide efficient stereoscopic video service. we define both temporally and spatially scalable layers for each eye's-view by using the concept of Spatio-Temporal scalability. According to the experimental results. we expect the proposed functionalities will play a key role in establishing highly flexible stereoscopic video codec for ubiquitous display environment where devices and network connections are heterogeneous.

  • PDF

A Single-Chip Video/Audio CODEC for Low Bit Rate Application

  • Park, Seong-Mo;Kim, Seong-Min;Kim, Ig-Kyun;Byun, Kyung-Jin;Cha, Jin-Jong;Cho, Han-Jin
    • ETRI Journal
    • /
    • v.22 no.1
    • /
    • pp.20-29
    • /
    • 2000
  • In this paper, we present a design of video and audio single chip encoder/decoder for portable multimedia application. The single-chip called as video audio signal processor (VASP) consists of a video signal processing block and an audio single processing block. This chip has mixed hardware/software architecture to combine performance and flexibility. We designed the chip by partitioning between video and audio block. The video signal processing block was designed to implement hardware solution of pixel input/output, full pixel motion estimation, half pixel motion estimation, discrete cosine transform, quantization, run length coding, host interface, and 16 bits RISC type internal controller. The audio signal processing block is implemented with software solution using a 16 bits fixed point DSP. This chip contains 142,300 gates, 22 Kbits FIFO, 107 kbits SRAM, and 556 kbits ROM, and the chip size is $9.02mm{\times}9.06mm$ which is fabricated using 0.5 micron 3-layer metal CMOS technology.

  • PDF

Storing and Broadcast System of Smart Multi Encoding Image (Smart 멀티 인코딩 영상 저장 및 방송 시스템)

  • Kim, Chang-Su;Kim, Jung-Woo;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1633-1638
    • /
    • 2013
  • The mobile phone has now evolved into an effective multimedia devices to watch video content with your PC in addition to the calling features. Thus, the effectiveness of the video content streaming services smartphone will be available. And content should be able to deliver effectively. Be provided with textbook images and video of the speaker means that the effective content delivery. In this paper, we propose a integrated video management system that can be real-time VOD services on the Internet as input Multi-Source of audio-video, video content encoding system to meet the requirements of the above two.

The Error concealment using Scalability in H.236v2 (H.263v2에서 계층부호화를 이용한 오류 은닉)

  • 한승균;장승기;서덕영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.1063-1075
    • /
    • 2000
  • This paper proposes an adaptive error concealment technique for compressed video. Since redundancy is extracted out during compression process, compressed video is vulnerable to errors which occur during transmission of video over error prone networks such as wireless channels and Internet. Error concealment is a process of reconstructing video out of damaged video bit stream. We proved that scalable encoding is very useful for error concealment. Analysis of experiments shows that some part of image is better concealed by using base layer information and other part of image is better concealed by using previous frame information. We developed a technique which enables to decide which methodology is more effective, adaptively, based on motion vectors and regional spatial activity. We used H.263v2 for scalable encoding, but, our approach could be applied to all DCT based video codec.

  • PDF