• 제목/요약/키워드: vibration transfer

검색결과 1,054건 처리시간 0.021초

모션프로파일의 주파수분석을 통한 웨이퍼 이송로봇의 진동성능 향상 (Improvement of Vibration Performance for Wafer Transfer Robot using Frequency Analysis of Motion Profile)

  • 신동원;윤장규
    • 한국정밀공학회지
    • /
    • 제31권8호
    • /
    • pp.697-703
    • /
    • 2014
  • This paper is study of solving vibration problem occurred in moving hand of wafer transfer robot in semiconductor manufacturing line. Long settling time for decreasing vibration makes low production rate, and moreover the excessive vibration of hand sometimes breaks the wafer in a cassette. The ways of reducing the moving speed and changing the type of motion profile did not help for lessening vibration. Therefore, we analyzed the mechanical property of the hand such as natural frequency, and frequency component of the motion profile currently used in the manufacturing line. In several conditions of motion profile, we found the best condition of which the frequency component in near of natural frequency of the hand is minimal and this induced small vibration in moving hand. The results were verified theoretically and experimentally using frequency analysis.

Dynamic Modulation Transfer Function Analysis of Images Blurred by Sinusoidal Vibration

  • Du, Yanlu;Ding, Yalin;Xu, Yongsen;Sun, Chongshang
    • Journal of the Optical Society of Korea
    • /
    • 제20권6호
    • /
    • pp.762-769
    • /
    • 2016
  • The dynamic modulation transfer function (MTF) for image degradation caused by sinusoidal vibration is formulated based on a Bessel function of the first kind. The presented method makes it possible to obtain an analytical MTF expression derived for arbitrary frequency sinusoidal vibration. The error obtained by the use of finite order sum approximations instead of infinite sums is investigated in detail. Dynamic MTF exhibits a stronger random behavior for low frequency vibration than high frequency vibration. The calculated MTFs agree well with the measured MTFs with the slant edge method in imaging experiments. With the proposed formula, allowable amplitudes of any frequency vibration are easily calculated. This is practical for the analysis and design of the line-of-sight stabilization system in the remote sensing camera.

TPA 방법을 이용한 연료탱크의 슬로싱 소음에 관한 민감도 해석 (Sensitivity Analysis using TPA for Slosh Noise of Fuel Tank)

  • 차희범;윤성호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.356-360
    • /
    • 2007
  • Fuel sloshing in a vehicle fuel tank generates a reluctant low frequency noise, called slosh noise. To reduce slosh noise, whilst many approaches have used the Computational Fluid Dynamics method to first identify fuel behavior in a fuel tank, this paper applies the Transfer Path Analysis method. It is to find contribution of each transfer path from noise transfer function, vibration transfer function and acceleration. Then the final goal is to attenuate slosh noise by controlling them. To this aim, two types of models are studied. One is the decoupled model in which some of connection points of the fuel tank with the vehicle underbody are separated. The other is the modified model which is created by changing noise transfer function and acceleration from the original model. The analysis and validation test results show that the transfer path analysis can be an approach to enhancing slosh noise.

  • PDF

TPA 방법을 이용한 연료탱크의 슬로싱 소음에 관한 민감도 해석 (Sensitivity Analysis Using TPA for Slosh Noise of Fuel Tank)

  • 차희범;윤성호
    • 한국소음진동공학회논문집
    • /
    • 제17권8호
    • /
    • pp.766-770
    • /
    • 2007
  • Fuel sloshing in a vehicle fuel tank generates a reluctant low frequency noise, called slosh noise. To reduce slosh noise, whilst many approaches have used the Computational Fluid Dynamics method to first identify fuel behavior in a fuel tank, this paper applies the Transfer Path Analysis method. It is to find contribution of each transfer path from noise transfer function, vibration transfer function and acceleration. Then the final goal is to attenuate slosh noise by controlling them. To this aim, two types of models are studied. One is the decoupled model in which some of connection points of the fuel tank with the vehicle underbody are separated. The other is the modified model which is created by changing noise transfer function and acceleration from the original model. The analysis and validation test results show that the transfer path analysis can be an approach to enhancing slosh noise.

선체 진동 특성 규명을 위한 기여도 분석 (Contribution Analysis to Identify the Source of Ship Hull Vibration)

  • 이준우;안세진;오준석;김태형;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제26권5호
    • /
    • pp.528-535
    • /
    • 2016
  • The vibration of a ship gives a significant effect on the noise radiated into the water. This paper focused on the vibration of ship hull due to the sub-generator located on the deck in the anchored condition. The contributions of the transfer paths between sub-generator and ship hull were analyzed using the TPA and the OTPA method. While the sub-generator was operation and the main engine was turned off, the vibrations were measured simultaneously at the 38 locations of the ship and the one hydrophone was arranged to measure the underwater radiated noise at the overside ship. The results of the transfer path by applying TPA and OTPA were compared and discussed. As a result of these methods, the top of stovepipe and valve are contributive. Reinforcing these structures is the most effective to reduce the vibration of ship hull.

저심도 터널과 인접한 방진벽의 지반진동 저감효과 (Vibration Isolation of Wave Barriers Constructed Near a Shallow Tunnel)

  • 양신추
    • 한국철도학회논문집
    • /
    • 제18권6호
    • /
    • pp.567-577
    • /
    • 2015
  • 본 논문에서는 계측자료와 해석방법의 조합에 의하여 지반진동을 평가하는 방법을 제시하였다. 평가방법의 기본개념은 FRA(Federal Railway Administration)에서 발간한 진동상세평가 매뉴얼에서 제시한 방법과 유사하나 구체적 평가방법은 다양한 유형의 방진벽의 진동저감 효과를 용이하게 평가할 수 있도록 수정되었다. 터널바닥에 작용하는 하중밀도(force density)는 해당선로의 차량 및 궤도조건을 잘 고려할 수 있는 차량-궤도 상호작용해석에 의하여 산정하였다. 지반진동의 전파유동성(transfer mobility) 2차원 지반진동해석을 통하여 평가하였다. 지반진동의 2차원 해석은 각 모델간의 상대비교에 있어서는 좋은 결과를 얻을 수 있으나 절대치 평가는 어렵다. 따라서 여기서는 사전에 계측된 자료와 해석결과의 비교를 통하여 실제 지반진동 전파특성을 반영할 수 있도록 계산된 전파유동성을 보완하였다. 정립된 진동평가방법을 적용하여 실제 진동민원문제가 크게 발생하였던 도시철도 저심도 터널구간을 대상으로 9가지 유형의 방진벽의 진동저감 효과를 분석하였다.

단순화된 타이어 진동전달 모델의 전달경로분석법을 이용한 로드노이즈 예측기술 개발 (Road Noise Estimation Based on Transfer Path Analysis Using a Simplified Tire Vibration Transfer Model)

  • 신태진;박종호;이상권;신광수;황성욱
    • 한국소음진동공학회논문집
    • /
    • 제23권2호
    • /
    • pp.176-184
    • /
    • 2013
  • Quantification of road noise is a challenging issue in the development of tire noise since its transfer paths are complicated. In this paper, a simplified model to estimate the road noise is developed. Transfer path of the model is from wheel to interior. The method uses the wheel excitation force estimated throughout inverse method. In inversion procedure, the Tikhonov regularization method is used to reduce the inversion error. To estimate the wheel excitation force, the vibration of knuckle is measured and transfer function between knuckle and wheel center is also measured. The wheel excitation force is estimated by using the measured knuckle vibration and the inversed transfer function. Finally interior noise due to wheel force is estimated by multiplying wheel excitation force in the vibro-acoustic transfer function. This vibro-acoustic transfer function is obtained throughout measurement. The proposed method is validated by using cleat excitation method. Finally, it is applied to the estimation of interior noise of the vehicle with different types of tires during driving test.

벡터합성법을 이용한 차량 실내소음의 입력원 영향도 평가 (Evaluation of the Inputs Efficiency for the Interior Noise of the Vehicle using Vector Synthesis Method)

  • 양인형;정재은;오재응
    • 한국소음진동공학회논문집
    • /
    • 제20권6호
    • /
    • pp.562-567
    • /
    • 2010
  • A passenger vehicle has various and complicated transmission paths of sound and vibration. In order to identify the mechanism of transfer path, estimation of excitation force and exact modeling of transfer path are required. In this paper vector synthesis technique is employed to identify the characteristics of road noise and its transmission to vehicle compartment through noise and vibration analysis. Vibration reduction efficiency of each transfer path is evaluated by comparing individual vector components obtained virtual simulation. The degree of effect is used to estimate the contribution of vibration input components to total output. And in this paper presents a new technique based on simulation studies using vector synthesis diagram and design of experiments, by which the effects of magnitude and phase change of input paths can be predicted.

진동-음향 상반성을 이용한 차실-트렁크 연성계의 소음평가 (Noise Estimation in a Passenger Compartment and Trunk Coupled System by Using the Vibro-Acoustic Reciprocity)

  • 이진우;이장무;김석현;박동철
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.178-185
    • /
    • 2001
  • This paper describes the correlation between the interior noise and the trunk wall vibration. Using the vibro-acoustic reciprocity, effect of the trunk wall vibration on the compartment noise is investigated on a medium size car. In the low frequency range, vehicle interior noise is dominated by several acoustic modes of the passenger compartment and the vibration modes of the surrounding shell parts. Especially, vibration of the trunk wall radiates sound and it is transferred through holes on the package tray into the passenger compartment. This paper experimentally reveals that sound can be well produced at some particular vibration modes of the trunk lid and it strongly influences the compartment noise through package tray holes. Contributions of the trunk walls to the interior noise are estimated by measuring the acoustic-structural transfer function, based on the vibro-acoustical reciprocity theorem.

  • PDF

Vibration analysis of asymmetric shear wall and thin walled open section structures using transfer matrix method

  • Bozdogan, Kanat Burak;Ozturk, Duygu
    • Structural Engineering and Mechanics
    • /
    • 제33권1호
    • /
    • pp.95-107
    • /
    • 2009
  • A method for vibration analysis of asymmetric shear wall and Thin walled open section structures is presented in this paper. The whole structure is idealized as an equivalent bending-warping torsion beam in this method. The governing differential equations of equivalent bending-warping torsion beam are formulated using continuum approach and posed in the form of simple storey transfer matrix. By using the storey transfer matrices and point transfer matrices which consider the inertial forces, system transfer matrix is obtained. Natural frequencies can be calculated by applying the boundary conditions. The structural properties of building may change in the proposed method. A numerical example has been solved at the end of study by a program written in MATLAB to verify the presented method. The results of this example display the agreement between the proposed method and the other valid method given in literature.