• Title/Summary/Keyword: vibration time

Search Result 3,471, Processing Time 0.031 seconds

The Vibration Control of a Opened Box Structure By a Neuro-Controller (신경망 제어기를 이용한 열린 박스 구조물의 진동 제어)

  • 신윤덕;장승익;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.983-987
    • /
    • 2003
  • Vibration causes noise and makes structure unstable. Especially, due to the effort of lightening, deformation of flexible structure is increased in its shape. Just a little disturbance causes vibration and low damping ratio causes residual vibration lasts long time. In this paper, by using a neuro-controller, which is one of the algorithm of adaptive control. we performed adaptive control of flexible cantilever plate and opened box structure with piezoelectric materials. The proposed adaptive vibration control algorithm, a neuro-controller, is proved in its effectiveness by applying to a opened box structure. The neuro-controller was implemented with DSP, and the real-time adaptive vibration control experiment results confirm that neuro-controller is reliable.

  • PDF

Effects of Re-vibration and Curing Temperature on the Physical Properties of Latex-Modified Concrete (진동가력과 양생온도가 라텍스개질 콘크리트에 미치는 영향)

  • 정원경;홍창우;이주형;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.799-804
    • /
    • 2003
  • The purpose of this study was to investigate the effects of re-vibration and curing temperature onto the physical properties of latex-modified concrete with ordinary cement and rapid-setting cement, and thus to provide a guide line of re-vibration and curing conditions for good quality controls. The main experimental variables included two cement types(ordinary portland cement, rapid-setting cement), curing Temperature($10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$), re-vibration methods(continued, intermittent), and re-vibration times(initial setting, one day after mixing). The experimental results showed that the re-vibration affected little to the mechanical properties of LMC and RSLMC, while, the curing temperature a quite some. The early strength development was the highest at $20^{\circ}C$ curing temperature, and decreased at higher temperature. The permeability of concrete generally decreased with curing time. The rapid chloride permeability was a function of time and temperature. The chloride permeability of RSLMC was so small and negligible.

  • PDF

Detecting the Direction of Vibration Inspired by Prey Detection Behavior of Sand Scorpions (사막 전갈의 진동 감지 행동을 모델로 한 진원지 방향 추정 기법)

  • Jeong, Eun-Seok;Kim, Dae-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.947-954
    • /
    • 2012
  • Sand scorpions are nocturnal animals to mostly use tactile senses to detect their prey. It has been reported that sand scorpions have high vibration sensitivity for their prey-localizing behavior. We tested vibration experiments in the sand with microphone sensors to model the sand scorpion's behavior and a time-difference model was applied to find the direction of a vibration source. Using the information of the arrival time of the vibration signal to reach each leg position, we can find the location of the vibration source.

A Study on the Characteristics of Blasting Vibration by Superposition Modeling (중첩 모델링을 통한 발파진동의 특성에 관한 연구)

  • Kang, Choo-Won;Kim, Seung-Hyun;Park, Hyun-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.326-333
    • /
    • 2006
  • In this study, the vibration waveform of the single hole which is not interfered from the different blasting holes is separated, the each dominant frequency which is determinated through the Fast Fourier Transform(FFT) is measured. Also the separation waveform executed a superposition modeling which changes to delay time from 1ms to 80 ms in 1ms interval and controls the number of blasting holes from 2 holes to 15 holes in order to investigate the effect of PPV according to the duration time of the vibration and the number of blasting holes. As a result of analysis, the longer the duration time of the vibration, the longer the delay time which is not interfered from the different blasting holes and the effect regarding the number of blasting holes from inside identical delay time did not appear a lot.

Development of the Adaptive PPF Controller for the Vibration Syppression of Smart Structures (지능구조물 제어를 위한 적응형 PPF 제어기의 개발)

  • Lee, Seung-Bum;Heo, Seok;Kwak, Moom Ku
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.302-307
    • /
    • 2001
  • This research is concerned with the development of a real-time adaptive PPF controller for the active vibration suppression of smart structure. In general, the tuning of the PPF controller is carried out off-line. In this research, the real-time learning algorithm is developed to find the optimal filter frequency of the PPF controller in real time and the efficacy of the algorithm is proved by implementing it in real time. To this end, the adaptive algorithm is developed by applying the gradient descent method to the predefined performance index, which is similar to the method used popularly in the optimization and neural network controller design. The experiment was carried out to verify the validity of the adaptive PPF controller developed in this research. The experimental results showed that adaptive PPF controller is effective for active vibration control of the structure which is excited by either impact or harmonic disturbance. The filter frequency of the PPF controller can be tuned in a very short period of time thus proving the efficiency of the adaptive PPF controller.

  • PDF

Prediction of Principal Frequency of Ground Vibration from Delayed Blasting (지연시차에 따른 발파진동의 주파수 특성 예측)

  • Chung, Doo-Sung;Kang, Choo-Won;Ko, Jin-Seok;Chang, Ho-Min;Ryu, Pog-Hyun
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.112-118
    • /
    • 2010
  • Before blasts that can have direct impacts on human bodies or structures, it is necessary to assess impacts of ground vibration. Therefore, frequency has been recognized as an important factor in order to assess impact on ground vibration and damages. There have been many studies on impacts of frequency. But, there have been no studies on relations between vibration and frequency according to delay time difference. In this study, we examined the relations between delay time difference and frequency according to each frequency with which reinforcement and destructive intervention repeat through delay time difference obtained using superposition modeling of single hole blasting waveform based on the theory of time difference developed by Langefors.

Flow-induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects (점성 및 충격파효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Park, Oung;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.937-948
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

Flow-Induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects (점성 및 충격파 효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Kim, Dong-Hyun;Park, Oung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.793-802
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

  • PDF

Estimation of Stiffness Limit for Railway Bridge Vibration Serviceability (진동사용성을 고려한 철도교량구조물의 강성한계 분석)

  • Park, Kyung-Rock;Jeon, Bub-Gyu;Kim, Nam-Sik;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.80-85
    • /
    • 2008
  • In general, deflection limit criteria of bridge design specifications have been considered based on static serviceability and structural stability. Dynamic serviceability induced from bridge vibration actually has not been included in the criteria. Thus, it is necessary for comfort limit to be considered in order to check dynamic serviceability on bridge vibration. In this study, the comfort limit of bridge structures based on the RMQ and VDV considering the signal fluctuation effectively and the time duration exposed has been constructed. The comfort limit developed in time domain was verified by using vibration signals directly measured from the existing bridges. Comparing the developed comfort limit with the conventional ones defined in frequency domain, it is shown that the comfort limit developed in time domain would be more feasible for evaluating quantitatively the serviceability due to bridge vibration. Using the Bridge-train interaction analysis program, dynamic response of the bridge by the stiffness change were obtained for several railway bridges. And, a stiffness limit satisfying the bridge vibration serviceability was estimated by compared with comport limit. From the results, a new deflection limit on bridge structures satisfying the vibration serviceability could be proposed by comparing with the conventional deflection limit criteria.

  • PDF

Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings

  • Hosseini, Seyyed A.H.;Khosravi, Farshad
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.25-36
    • /
    • 2020
  • Rotating systems concern with torsional vibration, and it should be considered in vibration analysis. To do this, the time-dependent torsional vibrations in a single-walled carbon nanotube (SWCNT) under the linear and harmonic external torque, are investigated in this paper. Eringen's nonlocal elasticity theory is considered to demonstrate the nonlocality and constitutive relations. Hamilton's principle is established to derive the governing equation of motion and consequently related boundary conditions. An analytical method, called the Galerkin method, is utilized to discretize the driven differential equations. Linear and harmonic torsional loads, along with determined amplitude, are applied to the SWCNT as the external torques. SWCNT is considered under the clamped-clamped end supports. In free vibration, analysis of small scale effect reveals the capability of natural frequencies in different modes, and this results desirably are in coincidence with another study. The forced torsional vibration in the time domain, especially for carbon nanotubes, has not been done before in the previous works. The previous forced studies were devoted to the transverse vibrations. It should be emphasized that the dynamical analysis of torsion is novel, workable, and at the beginning of the path. The variations of nonlocal parameter, CNT's thickness, and the influence of excitation frequency on time-dependent angular displacement and nondimensional angular displacement are investigated in the context.