• Title/Summary/Keyword: vibration test rig

Search Result 86, Processing Time 0.023 seconds

A Study on the Design of a Gear Transmission Error Test Rig (기어 전달오차 측정 장비의 설계에 관한 연구)

  • Zhang, Qi;Zhang, Jing;Yan, Hou-Ling;Zhu, Qing-Wang;Xu, Zhe-zhu;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.14-19
    • /
    • 2016
  • Transmission error (TE) is the most important cause of gear noise and vibration because TEs affect the changes of the force and the speed of gears. TE is usually expressed as an angular deviation, or a linear deviation measured at the pitch point and calculated at successive positions of the pinion as it goes through the meshing cycle. Accurate measurement of TE for gear transmission will provide a reasonable basis for gear design, manufacturing processes and quality control. Therefore, in order to study the accuracy of the gear transmission, stability, TE, vibration and noise after gear micro-geometry modification, a gear transmission test rig is proposed in this paper, which is based on the existing technical conditions, by using reasonable testing methods, hardware and a signal processing method. All of the details and the experience can be taken into consideration in the next upgraded test rig.

The Running Test of the Developed Bogie on the Roller Rig for Korean High Speed Train (한국형 고속전철용 개발대차의 주행시험대에서 주행성능평가)

  • 정훈;김진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.218-221
    • /
    • 2004
  • This Research is to test the running stability of the developed bogie with 350km/h of which conventional speed is faster than Korea TGV 300Km/h. The running stability test has been executed in status of a car with the developed bogie on the roller rigger to adjust similar to the actual condition. And the test has been done in the two rail conditions, i.e. excitation and non-excitation, respectively. Running speed of bogie increased by the roller step by step. In consequence, the developed bogie in the non-excitation has run without any unstable point for 400kn0h. Vibration characteristics of carbody also was within the value specified on the UIC 518.

  • PDF

Vibration Health Monitoring of Helicopter Transmission Systems at Westland Helicopter Ltd.

  • Kang, Chung-Shin;Choi, Sun-Woo;Ahn, Seok-Min;Horsey, M.W;Stuckey, M.J
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.48-61
    • /
    • 2000
  • Korea Aerospace Research Institute (KARI) have gained experience with Helicopter Vibration Health Monitoring (VHM) System technology with the help of UK GKN-WHL. GKN-WHL have had many years of experience with the research and development of vibration analysis techniques to improve the health monitoring of helicopter transmissions. This activity was targeted at transmission rig testing at first, but the techniques have been progressively developed where they are now used as a part of integrated Health and Usage Monitoring (HUM) systems on many types of in-service and new helicopters. The technique development process has been considerably aided by an ever expanding database of transmission monitoring experience from both the rig testing and aircraft operations. This experience covers a wide range of failure types from naturally occurring faults to crack propagation studies and covering a wide range of transmission configurations. Primarily based on accelerometer signals GKN-WHL's vibration analysis methods have also been applied to a variety of other sensor types. The transition from an experimental environment to operational VHM systems has been a lengthy process, there being a need to demonstrate technique reliability as well as effectiveness to both regulatory (Airworthiness Authority) and commercial organizations. Another important feature of this process has been the development of close relationships with a number of VHM system hardware and software suppliers. Such an experienced GKN-WHL provides various raw vibration data which was acquired from transmission ground test rig and allow KARI to develop it's own analysis program. KARI made a program and then analyzed the data to coma pre with the results of GKN-WHL. The KARI's results both time domain signals and statistical values show comparable to GKN's.

  • PDF

Vibration Analysis of a Turbo Compressor Test Rig (터보 압축기 성능시험을 위한 리그 진동 분석)

  • Park, Tae-Choon;Kang, Young-Seok;Yang, Soo-Seok;Lee, Jin-Kun
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.98-107
    • /
    • 2009
  • Vibration analysis of a turbo compressor test rig was carried out in order to investigate the vibrational characteristics of the compressor facility in KARI before conducting the compressor performance test of 5MW-class gas turbine engine for generation. The overall compressor test facility consists largely of inlet and exit ducts, a test section and a driving part. Vibration was measured with accelerometers at the test section and the driving part, especially at a main housing, a collector, a bearing carrier, a torquemeter, a gearbox, and an electric motor. Gap sensors are also installed to measure the rotordynamic characteristics of compressor shaft.

  • PDF

A Study on the Vibration/Noise Reduction of a Gear Driving System by Adjusting the Distance between Gear Shafts (기어열의 축간거리 조절을 통한 진동/소음 저감에 대한 연구)

  • Kim, Chea-Sil;Lee, Won-Chang;Lee, Jong-Pan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.697-703
    • /
    • 2006
  • This article proposes a new technique for the reduction of vibration and noise in the geared system by adjusting the distance between gear shafts. The vibration and noise may be produced by the abnormal force applied to the tooth face. And the force may be the cause of ununiform velocity in the driven shaft. If the velocity is obtained to be uniform by adjusting the distance between shafts. the vibration and noise may be reduced to some extent. In order to review, a dynamic analysis model for the gear train used in a mill turret and a test rig are developed. The velocities in the driven shaft are calculated by dynamic simulations for the model and noises in the test rig are measured with varying of the distance between shafts. The comparison of simulation and test data shows that the distance between shafts at the most uniform velocity has the lowest level of noise.

A Study on the Development of Test Rig for High Speed Frontal Crash and Test of Members

  • Shin-You. Kang;In-Bae. Chang;Jang, Hye-Jeong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.21-27
    • /
    • 2002
  • In this paper, a simple test rig of high-speed crash for the front members of vehicles was developed for the improvement of crashworthiness of vehicle's side rail. The cart hanging the specimen is accelerated up to 35 mph by the traction wire and by the force of freely dropping weight and 1:3 accelerating pulleys. The cart with shock absorbers travels on the rail roads, so it does not transfer any additional vibration to the specimen. In order to measure the energy absorbed by the specimen when it collapse to the wall and during it deform, the two strain gage type load cells are used at the wall place. The test rig rated good to test the specimen like a side rail of vehicle as developing the vehicle's structures in the early design stage.

헬리콥터용 반토오크 시스템 1차 시제 성능시험

  • Song, Keun-Woong;Kang, Hee-Jung;Sim, Joung-Wook;Lee, Je-Dong;Kim, Seung-Bum
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.50-59
    • /
    • 2005
  • This paper described performance test of 1st prototype "Tail-Fan" system. KARI(Korea Aerospace Research Institute) developed "Tail-Fan" system as a kind of helicopter anti-torque system(ATS) and designed ATS performance test-rig for Tail-Fan system performance test. For Tail-Fan system performance tests, firstly, test-rig operation tests were carried out for verification of design specifications. And natural frequencies of fan blade and test-rig were measured respectively. To find the operation rotating speed for performance tests, vibration tests using accelerometers on tail gear box(TGB) were carried out. Through the fanplot and vibration test results, rotational speed for Tail-Fan performance test to avoid a resonance were found and performance tests were carried out in flight conditions. We analyzed test data by non-dimensionalization. Through this results, 1st prototype "Tail-Fan" system was satisfied with design requirements.

  • PDF

Analysis of the Vibration Characteristics of a High-Speed Train using a Scale Model (축소모델을 통한 고속철도 차량의 진동특성 해석 및 검증)

  • Han, Jae Hyun;Kim, Tae Min;Kim, Jeung Tae
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • A scaled version of a roller rig is developed to demonstrate the dynamic characteristics of a railway vehicle for academic purposes. This rig is designed based on Jaschinski's similarity law. It is scaled to 1/10 of actual size and allows 9-DOF motion to examine the up and down vibration of a train set. The test rig consists of three sub-hardware components: (i) a driving roller mechanism with a three-phase AC motor and an inverter, (ii) a bogie structure with first and second suspensions, and (iii) the vehicle body. The motor of the rig is capable of 3,600rpm, allowing the test to simulate a vehicle up to a maximum speed of 400Km/hr. Because bearings and joints are properly connected to the sub-structures, various motion analyses, such as a lateral, pitching, and yawing motion, are allowed. The slip motion between the rail and the wheel set is also monitored by several sensors mounted in the rig. After the construction of the hardware, an experiment is conducted to obtain the natural frequencies of the dynamic behavior of the specimen. First, the test rig is run and data are collected from six sets of accelerometers. Then, a numerical analysis of the model based on the ADAMS program is derived. Finally, the measurement data of the first three fundamental frequencies are compared to the analytical result and the validation of the test rig is conducted. The results show that the developed roller rig provides good accuracy in simulating the dynamic behavior of the vehicle motion. Although the roller rig designed in this paper is intended for academia, it can easily be implemented as part of a dynamic experiment of a bogie and a vehicle body for a high-speed train as part of the research efforts in this area.

Domestic Application and Procedure Analysis of Gearbox Field Test (증속기 현장시험 국내 적용 사례 및 절차 분석)

  • Lee, Gwang-Se;Kang, Minsang;Kim, Seokwoo;Lee, Jin-Jae
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.23-32
    • /
    • 2020
  • The wind turbine gearbox has the longest downtime among other major turbine components such as blades, generators, and main bearings. Therefore, gearbox manufacturers conduct rig tests to evaluate conformity in terms of design and function. Rig tests, however, have limited similarity compared with atmospheric wind turbine operating conditions. Rig test conditions are thoroughly controlled and maintained by testers and the component certificates of gearboxes issued through the test cannot fulfill wind farm operator's requirements. Hence, certification bodies such as DNV-GL and UL require a mandatory gearbox field test report for type certification. The Korea Energy Agency (KEA) also introduced gearbox field test as a part of the KS type certificate in 2016, although it is optional . In this paper, gearbox field test procedures and requirements are introduced, and the first domestic application case of the test is reported. The field test was conducted with a 1.5 MW wind turbine gearbox located in Jeju as the test object.

A test on passing through bending critical speed of Flexible Rotor supported by AFB (AFB으로 지지된 탄성회전체의 위험속도 통과시험)

  • 이영섭;염병용;김진형;김명섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.354-359
    • /
    • 2001
  • A flexible rotor was smoothly passed through its bending critical speed, which is supported by AFB. Then, maximum magnitude of the rotor vibration at the middle point was 25${\mu}$m. The test rig was largely consisted of air turbine, multi-leaf type air foil bearing and flexible rotor and its bending critical speed was 32,600 rpm. And the balancing system and method for field balancing of the flexible rotor were developd successfully.

  • PDF