• Title/Summary/Keyword: vibration sensor

Search Result 1,201, Processing Time 0.025 seconds

A new approach to deal with sensor errors in structural controls with MR damper

  • Wang, Han;Li, Luyu;Song, Gangbing;Dabney, James B.;Harman, Thomas L.
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.329-345
    • /
    • 2015
  • As commonly known, sensor errors and faulty signals may potentially lead structures in vibration to catastrophic failures. This paper presents a new approach to deal with sensor errors/faults in vibration control of structures by using the Fault detection and isolation (FDI) technique. To demonstrate the effectiveness of the approach, a space truss structure with semi-active devices such as Magneto-Rheological (MR) damper is used as an example. To address the problem, a Linear Matrix Inequality (LMI) based fixed-order $H_{\infty}$ FDI filter is introduced and designed. Modeling errors are treated as uncertainties in the FDI filter design to verify the robustness of the proposed FDI filter. Furthermore, an innovative Fuzzy Fault Tolerant Controller (FFTC) has been developed for this space truss structure model to preserve the pre-specified performance in the presence of sensor errors or faults. Simulation results have demonstrated that the proposed FDI filter is capable of detecting and isolating sensor errors/faults and actuator faults e.g., accelerometers and MR dampers, and the proposed FFTC can maintain the structural vibration suppression in faulty conditions.

Study on characteristics of noncontact vibrating displacement sensor (비접촉식 진동 변위센서의 특성에 관한 연구)

  • Cho, C.W.;Cho, S.T.;Yang, K.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.13-18
    • /
    • 2011
  • This thesis is about the result of conducting a specific experiment for the development of noncontact vibration displacement sensor for measuring the spindle vibration that is used for conditional monitoring of machinery. One should be careful when using the eddy current type displacement sensor because the sensitivity of it is different according to the quality of the material. While the probe used for nondestructive inspection adopts the effect of transmitting the material by using the high frequency domain, the eddy current type displacement sensor uses the lower frequency of around 1MHz. Also, while the nondestructive probe uses the method of enhancing output by using the resonance zone, the vibration displacement sensor utilizes the stable zone by avoiding the resonance zone. Since the oscillator of the converter uses the "L" element as Probe, its characteristic changes with the variation of a relevant impedance. In other words, if the length of Probe's Cable gets extended (Impedance increase), the sensitivity declines accordingly. The effect of surrounding temperature was small, but the influence of the quality of Sensor Coil used was high. Moreover, following an experimental demonstration of the phenomenon where the sensitivity decreases as the frequency of the tested material increases from a frequency response test, the maximum frequency that could be measured was approximately 1KHz. It was noted that the degree of precision could be maintained by using the gap of the probe in the linear zone at the installation site.

Development of a Sensor System to Measure Real Time Vibro Displacement of Civil Structure

  • Sungjun Bum;Kim, Hiesik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.94.3-94
    • /
    • 2001
  • A sensor system was developed to measure displacement of civil structure at a long distance. A He-Ne Laser tube and photodiodes ware used for non-contact measurement. This system allows real time vibration displacement measurement of bridges. The measured displacement data is displayed on computer monitor graphically and also in digit. The accuracy of the displacement measurement shows 2mm in vertical vibration. It shows remote inspection of the vibration of long bridges and buildings.

  • PDF

The Implementation of high temperature displacement sensors and sensors drive system for Air-preheater (공기예열기를 위한 고온용 변위센서 및 센서드라이브 시스템 구현)

  • Cho, Hyang-Duck;Kim, Woo-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.453-458
    • /
    • 2011
  • Air preheater uses the waste heat of the gas which burnt from the boiler from the thermal power plant. Air preheater it is established in the exit of the boiler follows in change of temperature combustion gas and the vibration which it follows in thermal expansion and contraction occurs. Air preheater with ruse the gas the seal the place where it includes a gap in the structure which it does, the vibration which it follows in change of temperature fluctuates the displacement of gap, fluctuation of the leakage quantity which occurs from gap there is a possibility of decreasing an effect to system. Part system it will be able to control the interval of gap in order, control mechanism about under establishing the place where it does the gap control actively, measures a gap the displacement sensor for is necessary. Like this displacement sensor the condition must do continuous running from atmosphere of high temperature was demanded all. This paper investigates the implementation instance of hazard existing which implement the high temperature displacement sensor, it analyzes, produces the result which it examines a model, it was a presentation. These results with the fact that it will contribute in the research for the implementation and a localization of the high temperature displacement sensor and advanced air preheater.

  • PDF

Active Structural Acoustical Control of a Smart Panel Using Direct Velocity Feedback (직접속도 피드백을 이용한 지능판의 능동구조음향제어)

  • Stephen J, Elliott;Paolo, Gardonio;Young-Sup, Lee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1007-1014
    • /
    • 2004
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of $4\;{\times}\;4$ accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output control system. The theoretical and experimental study of sensor-.actuator frequency response function shows that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900 Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15 dB in vibration level and about 8 dB in acoustic power level at the (1,1) mode of the smart panel. It has been also shown that the shaping error of PVDF actuator could limit the stability and performance of the control system.

Vibration-based structural health monitoring using large sensor networks

  • Deraemaeker, A.;Preumont, A.;Reynders, E.;De Roeck, G.;Kullaa, J.;Lamsa, V.;Worden, K.;Manson, G.;Barthorpe, R.;Papatheou, E.;Kudela, P.;Malinowski, P.;Ostachowicz, W.;Wandowski, T.
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.335-347
    • /
    • 2010
  • Recent advances in hardware and instrumentation technology have allowed the possibility of deploying very large sensor arrays on structures. Exploiting the huge amount of data that can result in order to perform vibration-based structural health monitoring (SHM) is not a trivial task and requires research into a number of specific problems. In terms of pressing problems of interest, this paper discusses: the design and optimisation of appropriate sensor networks, efficient data reduction techniques, efficient and automated feature extraction methods, reliable methods to deal with environmental and operational variability, efficient training of machine learning techniques and multi-scale approaches for dealing with very local damage. The paper is a result of the ESF-S3T Eurocores project "Smart Sensing For Structural Health Monitoring" (S3HM) in which a consortium of academic partners from across Europe are attempting to address issues in the design of automated vibration-based SHM systems for structures.

Active Structural Acoustical Control of a Smart Structure using Uniform Force Actuator and Array of Accelerometers (균일힘 액추에이터와 가속도계 배열을 이용한 지능구조물의 능동구조 음향제어)

  • ;Stephen J Elliott;Paolo Gardonio
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.368-373
    • /
    • 2003
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of 4$\times$4 accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output con rot system. The theoretical and experimental study of sensor-actuator frequency response function sho vs that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15㏈ in vibration level and about 8 ㏈ in acoustic power level at the (1, 1) mode of the smart Panel. It has been also shown that the shaping error of PVDF actuator could limit he stability and performance of the control system.

  • PDF

Vibration Control of a Glass-Fiber Reinforced Termoplastic Composite Beam (유리섬유를 함유한 열가소성 복합재 보의 진동제어)

  • 권대규;윤여흥;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.11-14
    • /
    • 2000
  • This paper presents the vibration control of a glass-fiber reinforced thermoplastic composite beam with a distributed PVDF sensor and piezo-ceramic achlator. The three types of different controllen which are PID, H$\infty$ , and p-synthesis ontrollcr are employed to achieve vibration suppression in the transient vibration of composite beam. In the H$\infty$ , controller design, 1st and 2nd natural frequencies are considered in the modeling, because robust control theory which has robustness to struchred uncertainty is adopled Lo suppress the vibration. If the controller designed by H$\infty$ , theory does not satisfy control performance, it is improved by $\mu$ -synthesis method with D-K iteration so that the$\mu$-contoller based on the structured singular value satisfies the nominal performance and robust performance Simulations and experiments were carried out with the designed controllers m order to demonstrate the suppression efficiency of each controller.

  • PDF

Test and Simulation of an Active Vibration Control System for Helicopter Applications

  • Kim, Do-Hyung;Kim, Tae-Joo;Jung, Se-Un;Kwak, Dong-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.442-453
    • /
    • 2016
  • A significant source of vibration in helicopters is the main rotor system, and it is a technical challenge to reduce the vibration in order to ensure the comfort of crew and passengers. Several types of passive devices have been applied to conventional helicopters in order to reduce the vibration. In recent years, helicopter manufacturers have increasingly adopted active vibration control systems (AVCSs) due to their superior performance with lower weight compared with passive devices. AVCSs can also maintain their performance over aircraft configuration and flight condition changes. As part of the development of AVCS software for light civil helicopter (LCH) applications, a test bench is constructed and vibration control tests and simulations are performed in this study. The test bench, which represents the airframe, is excited using a pair of counter rotating force generators (CRFGs) and a multiple input single output (MISO) AVCS that consists of three accelerometer sensors and a pair of CRFGs; a filtered-x least mean square (LMS) algorithm is applied for the vibration reduction. First, the vibration control tests are performed with uniform sensor weights; then, the change in the control performance according to changes in the sensor weight is investigated and compared with the simulation results. It is found that the vibration control performance can be tuned through adjusting the weights of the three sensors, even if only one actuator is used.