• 제목/요약/키워드: vibration of slab

Search Result 288, Processing Time 0.028 seconds

A Study on Modifacation of a Prediction Equation for the Natural Frequency of a Composite Deck Floor System through the Simplification of a section Transformation (합성데크 플레이트 바닥구조의 단면환산 단순화를 통한 고유진동수 예측식의 보정에 관한 연구)

  • Im, Ji Hoon;Park, Jin Young;Hong, Won Kee;Kim, Hee Cheul
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.549-556
    • /
    • 2002
  • The natural frequency of a system is commonly used in evaluating the serviceability condition of a floor. However. the current equations recommended in many building codes do not consider the various material types of a slab system; thus. different results are observed. Likewise. the transformation of a slab section required to predict the natural frequency of a composite deck plate is complicated. due to the varying shapes of the deck plates. Therefore. a new and simplified method of transforming a composite slab into an equivalent concrete slab is proposed. he modified vibration prediction equation was proposed based on the current vibration prediction equation recommended by LRFD. Compared to other equations. it is the closest to those obtained from experiments. The modified equation provides about 14.3% more accurate results than that recommended by LRFD. Likewise. the applicability of the proposed equation to other types of composite deck plate floor system was validated.

Evaluation of Dynamic Stability of Precast Floating Slab Track with Vehicle-Track Interaction Analysis (차량-궤도 상호작용 해석을 통한 사전 제작형 플로팅 슬래브 궤도의 동적 안정성 검토)

  • Jang, Dongdoo;Kim, Jin-Ho;Kwon, Se-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.562-568
    • /
    • 2017
  • A precast floating slab track with a 5m slab panel and installed with isolators is proposed to solve the noise and vibration problem at existing elevated railway stations. Thus, the construction can be carried out rapidly without interrupting the train operation. However, dynamic instability problems may be caused by repeated discontinuities in track due to the short slab panel length and excessive rail displacement due to the inherent operation mechanism of a floating system in reducing the vibration. Furthermore, the difference of the supporting stiffness at the transition between the floating track and ballast track may raise problems. In this study, the assessment factors to evaluate the dynamic stability of the precast floating slab track are presented and assessed with the vehicle-track interaction analysis. Through the analysis, all values relevant to the stability at the floating track section are found to be acceptable, and the slab panels at the transition section are designed to satisfy the stability.