• Title/Summary/Keyword: vibration monitoring

Search Result 1,033, Processing Time 0.028 seconds

Vibration Characteristics of the Tower Structures of Wind Turbine Generators (풍력발전기 타워 구조의 진동 특성)

  • Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.49-59
    • /
    • 2009
  • Vibrations of the tower structures of 750kW and 6kW wind turbines(WT) are investigated by measurement and analysis. Acceleration responses of the WT towers under various operation condition are monitored in real time by the remote monitoring system using LabVIEW. Using the monitoring system, resonance condition of the tower structures is diagnosed with the wind speed data within the operating speed range. To predict the tower resonance frequency, 750 kW tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. For 6 kW WT, Rayleigh-Ritz analysis is carried out on the tower-cable coupled system. Calculated tower bending frequency is in good agreement with the measured value. Using the analysis model, parametric study is available in order to prevent the severe resonance.

  • PDF

Directional Wigner-Ville Distribution and Its Application for Rotating- Machinery Condition Monitoring

  • Kim, Dong-Wan;Ha, Jae-Hong;Shin, Hae-Gon;Lee, Yoon-Hee;Kim, Young-Baik
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.587-593
    • /
    • 1996
  • Vibration analysis is one of the most powerful tools available for the detection and isolation of incipient faults in mechanical systems. The methods of vibration analysis in use today and under continuous study are broad band vibration monitoring, time domain analysis, and frequency domain analysis. In recent years, great interest has been generated concerning the use of time-frequency representation and its application for a machinery diagnostics and condition monitoring system. The objective of the research described in this paper was to develop a new diagnostic tool for the rotating machinery. This paper introduces a new time-frequency representation, Directional Wigner-Ville Distribution, which analyses the time- frequency structure of the rotating machinery vibration.

  • PDF

On-Line Condition Monitoring for Rotating Machinery Using Multivariate Statistical Analysis (다변량 통계 분석 방법을 이용한 회전기계 이상 온라인 감시)

  • Kim, Heung-Mook;Lim, Eun-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1108-1113
    • /
    • 2000
  • A condition monitoring methodology for rotating machinery is proposed based on multivariate statistical analysis. The CMS usually are using the vibration signal amplitude such as acceleration RMS, peak and velocity RMS to detect machine faults but the information is not so enough that CMS cannot perform reliable monitoring. So new parameters are added such as shape factor, crest factor, kurtosis and skewness as time domain parameters and spectrum amplitude of rotating frequency, $2^{nd}$ harmonics and gear mesh frequency etc. as frequency domain parameters. Many parameters are combined to represent the machine state using the Hotelling's $T^2$ statistics. The proposed methodology is tested in laboratory and the on-line experiment has shown that the proposed methodology offers a reliable monitoring for rotating machinery.

  • PDF

Development of Rotating Machine Vibration Condition Monitoring System based upon Windows NT (Windows NT 기반의 회전 기계 진동 모니터링 시스템 개발)

  • 김창구;홍성호;기석호;기창두
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.98-105
    • /
    • 2000
  • In this study, we developed rotating machine vibration condition monitoring system based upon Windows NT and DSP Board. Developed system includes signal analysis module, trend monitoring and simple diagnosis using threshold value. Trend analysis and report generation are offered with database management tool which was developed in MS-ACCESS environment. Post-processor, based upon Matlab, is developed for vibration signal analysis and fault detection using statistical pattern recognition scheme based upon Bayes discrimination rule and neural networks. Concerning to Bayes discrimination rule, the developed system contains the linear discrimination rule with common covariance matrices and the quadratic discrimination rule under different covariance matrices. Also the system contains k-nearest neighbor method to directly estimate a posterior probability of each class. The result of case studies with the data acquired from Pyung-tak LNG pump and experimental setup show that the system developed in this research is very effective and useful.

  • PDF

Integration of health monitoring and vibration control for smart building structures with time-varying structural parameters and unknown excitations

  • Xu, Y.L.;Huang, Q.;Xia, Y.;Liu, H.J.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.807-830
    • /
    • 2015
  • When a building structure requires both health monitoring system and vibration control system, integrating the two systems together will be cost-effective and beneficial for creating a smart building structure with its own sensors (nervous system), processors (brain system), and actuators (muscular system). This paper presents a real-time integrated procedure to demonstrate how health monitoring and vibration control can be integrated in real time to accurately identify time-varying structural parameters and unknown excitations on one hand, and to optimally mitigate excessive vibration of the building structure on the other hand. The basic equations for the identification of time-varying structural parameters and unknown excitations of a semi-active damper-controlled building structure are first presented. The basic equations for semi-active vibration control of the building structure with time-varying structural parameters and unknown excitations are then put forward. The numerical algorithm is finally followed to show how the identification and the control can be performed simultaneously. The results from the numerical investigation of an example building demonstrate that the proposed method is feasible and accurate.

A Study on the Improvement Plan of Construction Noise Monitoring (공사장 소음모니터링 개선방안에 관한 연구)

  • Park, Young-Min;Kim, Kyoung-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.12
    • /
    • pp.1056-1065
    • /
    • 2013
  • Noise generated from Construction site has been raised most civil complaints to 64.4 % among the environmental pollution in 2011. Therefore, local government recommends and prescribes that construction sites over a certain scale install sound level meter for noise monitoring. For example, Seoul has implemented a 24 hour noise monitoring system, with real time communication, to the large construction sites more than 10,000 $m^2$ from the end of August 2012. But it is difficult to use noise measurement data for the construction noise assessment, since the installation standards and technical specifications for construction noise monitoring system are not presented. In this paper, we proposed noise monitoring system improvement plan including technical specifications and installation standards using the investigating results of the problems of current noise monitoring system and the foreign cases.

Sensor Based Bridge Monitoring System (센서기반 교량 유지관리 시스템)

  • 장정환;김완종;안호현;이세호;정태영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.602-607
    • /
    • 2003
  • Sensors based bridge monitoring system (SBBMS) is designed to perform real-time monitoring and to store the performance history of in-service bridges. In general, visual inspections play a major role in maintenance of in-service bridges; however, they are not adequate to document the behavior of a bridge. Therefore, visual inspections and sensor based monitoring systems complement each other. Sensor based bridge monitoring systems consist of hardware and software systems. The hardware system contains the sensors and data-loggers to measure the behavior of a structure, the communicational equipment to transmit the measured data from the site to the monitoring center, and the computers to arrange and analyze the data. The software system controls data-loggers, arranges and analyzes the measured data, makes real-time display, stores the performance history.

  • PDF

Condition Monitoring for Coil Break Using Features of Stationary Rolling Region (정상 압연 구간의 특징을 이용한 판 파단의 상태감시)

  • Oh, J.S.;Yang, S.W.;Shim, M.C.;Caesarendra, W.;Yang, B.S.;Lee, W.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1252-1259
    • /
    • 2009
  • Due to the international competition and global pressure, the roll speed is increased. However, higher speeds increase the power density in the process as well as the plant's potential to react with vibrations. Under certain operating conditions, vibrations may occur, which again cause chattermarks, strip rupture or coil break fault. The appropriate condition monitoring is needed to improve product quality and availability. The aim of condition monitoring is to reduce maintenance costs, increase productivity and improve product quality. This paper proposes a condition monitoring tool designed for the classification of coil break fault. This method is used to cold rolling mill for faults monitoring based on vibration and motor current signals. The results show that the performance of classification has high accuracy based on experimental work.

A Study on the Tool Wear and Surface Roughness in Cutting Processes for a Neural-Network-Based Remote Monitoring system (신경회로망을 이용한 원격모니터링을 위한 가공공정의 공구마모와 표면조도에 관한 연구)

  • Kwon, Jung-Hee;Jang, U-Il;Jeong, Seong-Hyun;Kim, Do-Un;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.33-39
    • /
    • 2012
  • The tool wear and failure in automatic production system directly influences the quality and productivity of a product, thus it is essential to monitor the tool state in real time. For such purpose, an ART2-based remote monitoring system has been developed to predict the appropriate tool change time in accordance with the tool wear, and this study aims to experimently find the relationship between the tool wear and the monitoring signals in cutting processes. Also, the roughness of workpiece according to the wool wear is examined. Here, the tool wear is indirectly monitored by signals from a vibration senor attached to a machining center. and the wear dimension is measured by a microscope at the start, midways and the end of a cutting process. A series of experiments are carried out with various feedrates and spindle speeds, and the results show that the sensor signal properly represents the degree of wear of a tool being used, and the roughnesses measured has direct relation with the tool wear dimension. Thus, it is concluded that the monitoring signals from the vibration sensor can be used as a useful measure for the tool wear monitoring.

Application of Compressive Sensing and Statistical Analysis to Condition Monitoring of Rotating Machine (압축센싱과 통계학적 기법을 적용한 회전체 시스템의 상태진단)

  • Lee, Myung Jun;Jeon, Jun Young;Park, Gyuhae;Kang, To;Han, Soon Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.651-659
    • /
    • 2016
  • Condition monitoring (CM) encounters a large data problem due to sensors that measure vibration data with a continuous, and sometimes, high sampling rate. In this study, compressive sensing approaches for condition monitoring are proposed to demonstrate the efficiency in handling a large amount of data and to improve the damage detection capability of the current condition monitoring process. Compressive sensing is a novel sensing/sampling paradigm that takes much fewer samples compared to traditional sampling methods. For the experiments a built-in rotating system was used and all data were compressively sampled to obtain compressed data. Optimal signal features were then selected without the reconstruction process and were used to detect and classify damage. The experimental results show that the proposed method could improve the data processing speed and the accuracy of condition monitoring of rotating systems.