• Title/Summary/Keyword: vibration effect

Search Result 3,876, Processing Time 0.038 seconds

Deep Learning: High-quality Imaging through Multicore Fiber

  • Wu, Liqing;Zhao, Jun;Zhang, Minghai;Zhang, Yanzhu;Wang, Xiaoyan;Chen, Ziyang;Pu, Jixiong
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.286-292
    • /
    • 2020
  • Imaging through multicore fiber (MCF) is of great significance in the biomedical domain. Although several techniques have been developed to image an object from a signal passing through MCF, these methods are strongly dependent on the surroundings, such as vibration and the temperature fluctuation of the fiber's environment. In this paper, we apply a new, strong technique called deep learning to reconstruct the phase image through a MCF in which each core is multimode. To evaluate the network, we employ the binary cross-entropy as the loss function of a convolutional neural network (CNN) with improved U-net structure. The high-quality reconstruction of input objects upon spatial light modulation (SLM) can be realized from the speckle patterns of intensity that contain the information about the objects. Moreover, we study the effect of MCF length on image recovery. It is shown that the shorter the fiber, the better the imaging quality. Based on our findings, MCF may have applications in fields such as endoscopic imaging and optical communication.

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part II: Numerical simulations

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3085-3099
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to numerically assess the damage and vibrations of NPP buildings subjected to aircrafts crash. In Part I of present paper, two shots of reduce-scaled model test of aircraft impact on NPP were conducted based on the large rocket sled loading test platform. In the present part, the numerical simulations of both scaled and prototype aircraft impact on NPP buildings are further performed by adopting the commercial program LS-DYNA. Firstly, the refined finite element (FE) models of both scaled aircraft and NPP models in Part I are established, and the model impact test is numerically simulated. The validities of the adopted numerical algorithm, constitutive model and the corresponding parameters are verified based on the experimental NPP model damages and accelerations. Then, the refined simulations of prototype A380 aircraft impact on a hypothetical NPP building are further carried out. It indicates that the NPP building can totally withstand the impact of A380 at a velocity of 150 m/s, while the accompanied intensive vibrations may still lead to different levels of damage on the nuclear related equipment. Referring to the guideline NEI07-13, a maximum acceleration contour is plotted and the shock damage propagation distances under aircraft impact are assessed, which indicates that the nuclear equipment located within 11.5 m from the impact point may endure malfunction. Finally, by respectively considering the rigid and deformable impacts mainly induced by aircraft engine and fuselage, an improved Riera function is proposed to predict the impact force of aircraft A380.

Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation

  • Chaabane, Lynda Amel;Bourada, Fouad;Sekkal, Mohamed;Zerouati, Sara;Zaoui, Fatima Zohra;Tounsi, Abdeldjebbar;Derras, Abdelhak;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.185-196
    • /
    • 2019
  • In this investigation, study of the static and dynamic behaviors of functionally graded beams (FGB) is presented using a hyperbolic shear deformation theory (HySDT). The simply supported FG-beam is resting on the elastic foundation (Winkler-Pasternak types). The properties of the FG-beam vary according to exponential (E-FGB) and power-law (P-FGB) distributions. The governing equations are determined via Hamilton's principle and solved by using Navier's method. To show the accuracy of this model (HySDT), the current results are compared with those available in the literature. Also, various numerical results are discussed to show the influence of the variation of the volume fraction of the materials, the power index, the slenderness ratio and the effect of Winkler spring constant on the fundamental frequency, center deflection, normal and shear stress of FG-beam.

Driving safety analysis of various types of vehicles on long-span bridges in crosswinds considering aerodynamic interference

  • Han, Yan;Huang, Jingwen;Cai, C.S.;Chen, Suren;He, Xuhui
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.279-297
    • /
    • 2019
  • Strong winds threaten the safety of vehicles on long-span bridges considerably, which could force traffic authorities to reduce speed limits or even close these bridges to traffic. In order to maintain the safe and economic operation of a bridge, a reasonable evaluation of the driving safety on that bridge is needed. This paper aims at carrying outdriving safety analyses for three types of vehicles on a long-span bridge in crosswinds by considering the aerodynamic interference between the bridge and the vehicles based on the wind-vehicle-bridge coupling vibration analysis. Firstly, CFD numerical simulations along with previously obtained wind tunnel testing results were used to determine the aerodynamic force coefficients of the three types of vehicles on the bridge. Secondly, the dynamic responses of the bridge and the vehicles under crosswinds were simulated, and based on those, the driving safety analyses for the three types of vehicles on the bridge were carried out for both cases considering and not considering the aerodynamic interference between the vehicles and the bridge. Finally, the effect of the aerodynamic interference on the safety of the vehicles was investigated. The results show that the aerodynamic interference between the bridge and the vehicles not only affectsthe accident critical wind speed but also the accident type for all three types of vehicles. Such effects are also different for each of the three types of vehicles being studied.

Fall prevention strategies in community-dwelling older adults aged 65 or over with type 2 diabetes mellitus: a systematic review and meta-analysis

  • Hwang, Sujin;Woo, Youngkeun
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.4
    • /
    • pp.197-203
    • /
    • 2018
  • Objective: Independent walking is the most essential prerequisite to maintain quality of life in older persons. The purpose of this review was to investigate the effect of fall prevention strategies on fall risk for type 2 diabetes mellitus (T2DM) within community-dwelling older adults aged 65 and over. Design: A systematic review and meta-analysis. Methods: PubMed and three other databases were searched up to October 31st, 2018 and randomized controlled trials (RCTs) evaluating fall prevention strategies for fall risk in persons who were 65 years of age or above with T2DM were included. The review extracted the following information from each study selected: first author's surname, published year, country, study population, type of intervention, intensity of intervention, comparison, measurement variables, additional therapy, summary of results, and mean and standard deviation from selected studies. Results: This review selected fourteen RCTs with 460 older adults with diabetes mellitus. Of the 14 studies, the types of intervention used to improve the risk of falls were strengthening (5), aerobic exercises (2), multimodal exercises (4), one virtual reality exercise (1), whole body vibration with balance exercise (1), and Tai Chi exercise (1). Seven RCTs were eligible for the meta-analysis. Therapeutic interventions were more effective than the control group for the Timed Up-and-Go test (-1.11; 95% CI, -1.82 to -0.41) and the 6-minute Walk Test (-1.89; 95% CI, -8.33 to 4.54). Conclusions: The results of the review suggest that interventions to prevent fall risk in older adults with T2DM should focus on strengthening, balance, aerobic, and multimodal exercises.

Numerical simulation in time domain to study cross-flow VIV of catenary riser subject to vessel motion-induced oscillatory current

  • Liu, Kun;Wang, Kunpeng;Wang, Yihui;Li, Yulong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.491-500
    • /
    • 2020
  • The present study proposes a time domain model for the Vortex-induced Vibration (VIV) simulation of a catenary riser under the combination of the current and oscillatory flow induced by vessel motion. In this model, the hydrodynamic force of VIV comprises excitation force, hydrodynamic damping and added mass, which are taken as functions of the non-dimensional frequency and amplitude ratio. The non-dimensional frequency is related with the response frequency, natural frequency, lock-in range and the fluid velocity. The relatively oscillatory flow induced by vessel motion is taken into account in the fluid velocity. Considering that the added mass coefficient and the non-dimensional frequency can affect each other, an iterative analysis is conducted at each time step to update the added mass coefficient and the natural frequency. This model is in detail validated against the published test models. The results show that the model can reasonably reflect the effect of the added mass coefficient on the VIV, and can well predict the riser's VIV under stationary and oscillatory flow induced by vessel motion. Based on the model, this study carries out the VIV simulation of a catenary riser with harmonic vessel motion. By analyzing the bending moment near the touchdown point, it is found that under the combination of the ocean current and oscillatory flow the vessel motion may decrease the VIV response, while increase the excited frequencies. In addition, the decreasing rate of the VIV under vessel surge is larger than that under vessel heave at small vessel motion velocity, while the situation becomes opposite at large vessel motion velocity.

A simplified directly determination of natural frequencies of CNT: Via aspect ratio

  • Banoqitah, Essam Mohammed;Hussain, Muzamal;Khadimallah, Mohamed A.;Ghandourah, Emad;Yahya, Ahmad;Basha, Muhammad;Alshoaibi, Adil
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.207-216
    • /
    • 2022
  • In this paper, a novel model is developed for frequency behavior of single walled carbon nanotubes. The governing equation of motion is constructed method based on the Sander theory using Rayleigh-Ritz's method The frequencies enhances on increasing the power law index using simply supported, clamped and clamped free end conditions. The frequency curve for C-F is less than other conditions. It is due to the physical constraints which are applied on the edge of the CNT. It is observed that the C-F boundary condition have less frequencies from the other two conditions. The frequency phenomena for zigzag are insignificant throughout the aspect ratio. Moreover when index of power law is increased then frequencies increases for all boundary conditions. The natural frequency mechanism for the armchair (10, 10) for various values of power law index with different boundary conditions is investigated. Here frequencies decrease on increases the aspect ratio for all boundary conditions. The frequency curves of SS-SS edge condition is composed between the C-C and C-F conditions. The curves of frequency are less significant from small aspect ratio (L/d = 4.86 ~ 8.47) and decreases fast for greater ratios. It is found that the frequencies via aspect ratios, armchair (10, 10) have higher values from zigzag (10, 0). It is due to the material structure which is made by the carbon nanotubes. The power law index have momentous effect on the vibration of single walled carbon nanotubes. The present frequency result is also compared numerically experimentally with Raman Spectroscopy.

Feasibility Study of a Corrugated Steel Protective Structure for Ammunition Test Facility (탄약시험장의 강재 방호구조물 적용성 분석 연구)

  • Han, Jae Duk;Kim, Donghee;Kim, Sungkon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.671-679
    • /
    • 2022
  • Harmful factors such as shock waves and fragments are generated at domestic ammunition testing sites and military shell shooting training sites due to frequent shooting and explosion tests. As a result, complaints from local residents are rapidly increasing, and there is a high risk of damage to facilities and human life. The recently constructed ammunition test site built a test facility for firing artillery and rocket propulsion in a narrow area with a radius of 300 m due to site restrictions, but damage to the facility is accumulating because there is no adequate protective structure. Therefore, in this study, quantitative data on harmful factors such as noise, vibration, shock wave, and thermal effect generated between artillery firing and rocket propulsion tests were measured, and explosion pressure characteristics were analyzed to design a protective structure, and use Autodyn to protect performance. to perform verification.

Analysis of Applicability of Active Noise Control (ANC) technique for Reducing Inter-Floor Noise in Apartment Buildings (공동주택 층간소음 저감을 위한 능동소음제어(ANC) 기술 적용가능성 분석)

  • Nam, Jin-Won;Kim, Ho-Jin;Kim, Jun-Hwan;Wee, Hyuk;Kim, Joong-Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.49-56
    • /
    • 2022
  • In this study, numerical simulations for reducing noise between floors in an apartment building was carried out using Active Noise Control (ANC) technology. In order to examine the feasibility of using ANC to reduce noise between floors, accelerometers and microphones for noise collection were installed in the inter-floor noise test facility to measure noise and vibration caused by the impact ball drop test. By using the measured data, Filtered-x Least Mean Square (Fx-LMS) algorithm-based ANC simulations were carried out. In the simulations, after deriving optimal simulation conditions including the adaptive control convergence coefficient, the noise reduction effect was analyzed through numerical simulations using the number of installed accelerometers and speakers as variables. Finally, it was confirmed that the noise between floors could be reduced using ANC technology under limited conditions.

Effect of GGBS and fly ash on mechanical strength of self-compacting concrete containing glass fibers

  • Kumar, Ashish;Singh, Abhinav;Bhutani, Kapil
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.429-437
    • /
    • 2021
  • In the era of building engineering the intensification of Self Compacting Concrete (SCC) is world-shattering magnetism. It has lot of rewards over ordinary concrete i.e., enrichment in production, cutback in manpower, brilliant retort to load and vibration along with improved durability. In the present study, the mechanical strength of CM-2 (SCC containing 10% of rice husk ash (RHA) as cement replacement and 600 grams of glass fibers per cubic meter) was investigated at various dosages of cement replacement by fly ash (FA) and GGBS. A total of 17 SCC mixtures including two control SCC mixtures (CM-1 and CM-2) were developed for investigating fresh and hardened properties in which, ten ternary cementitious blends of SCC by blending OPC+RHA+FA, OPC+RHA+GGBS and five quaternary cementitious blends (OPC+RHA+FA+GGBS) at different replacement dosages of FA and GGBS were developed with reference to CM-2. For constant water-cement ratio (0.42) and dosage of SP (2.5%), the addition of glass fibers (600 grams/m3) in CM-1 i.e., CM-2 shows lower workability but higher mechanical strength. While fly ash based ternary blends (OPC+RHA+FA) show better workability but lower mechanical strength as FA content increases in comparison to GGBS based ternary blends (OPC+RHA+GGBS) on increasing GGBS content. The pattern for mixtures appeared to exhibit higher workablity as that of the concentration of FA+GGBS rises in quaternary blends (OPC+RHA+FA+GGBS). A decrease in compressive strength at 7-days was noticed with an increase in the percentage of FA and GGBS as cement replacement in ternary and quaternary blended mixtures with respect to CM-2. The highest 28-days compressive strength (41.92 MPa) was observed for mix QM-3 and the lowest (33.18 MPa) for mix QM-5.