• Title/Summary/Keyword: vibration effect

Search Result 3,876, Processing Time 0.029 seconds

The Design of End Edge Shape for Reduction of Long-Distance Transportation Stationary Discontinuous Armature PMLSM Thrust Ripple with Distributed Winding (장거리 반송용 전기자 분산배치 분포권 PMLSM의 추력맥동 저감을 위한 단부형상 설계)

  • Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1675-1680
    • /
    • 2013
  • Recently, the permanent magnet linear synchronous motor as low noise, high speed and high thrust force transportation system has been proposed but this motor causes an increase of material cost because of its characteristic arranging the armature on the full length of transportation lines when this system is applied to the long distance transportation system. Therefore, we suggested discontinuous arrangement method of the armature to solve this problem. However, Detent force which causes thrust force ripple generating noise, vibration and decline of performance is generated when a mover pass between the armatures. Thus, in this paper, we examined characteristic of detent force to reduce the end edge effect according to the end edge teeth's height and auxiliary teeth and suggested the shape that can the most reduce the detent force.

Energy harvesting techniques for health monitoring and indicators for control of a damaged pipe structure

  • Cahill, Paul;Pakrashi, Vikram;Sun, Peng;Mathewson, Alan;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.287-303
    • /
    • 2018
  • Applications of energy harvesting from mechanical vibrations is becoming popular but the full potential of such applications is yet to be explored. This paper addresses this issue by considering an application of energy harvesting for the dual objective of serving as an indicator of structural health monitoring (SHM) and extent of control. Variation of harvested energy from an undamaged baseline is employed for this purpose and the concept is illustrated by implementing it for active vibrations of a pipe structure. Theoretical and experimental analyses are carried out to determine the energy harvesting potential from undamaged and damaged conditions. The use of energy harvesting as indicator for control is subsequently investigated, considering the effect of the introduction of a tuned mass damper (TMD). It is found that energy harvesting can be used for the detection and monitoring of the location and magnitude of damage occurring within a pipe structure. Additionally, the harvested energy acts as an indicator of the extent of reduction of vibration of pipes when a TMD is attached. This paper extends the range of applications of energy harvesting devices for the monitoring of built infrastructure and illustrates the vast potential of energy harvesters as smart sensors.

A Study on the Improvement and Environment-friendly Interior Space Planning of High-rise Residences in Korea - focuesd on the case analysis by environment-friendly architectural certification - (국내 초고층 주거의 친환경적 실내 공간 계획 및 개선방안 연구 - 친환경 건축 인증 제도에 의한 사례 분석을 중심으로 -)

  • Kim, Ja-Kyung
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.3
    • /
    • pp.23-33
    • /
    • 2008
  • After the concept of apartments was introduced in 1960s in Korea, on account of the development of architectural technology and science, high-rise residences in Korea are getting higher, and these residences have been becoming high-rise commercial/residential buildings since 1990. Nowadays, as the construction of high-rise commercial residential building complex is booming, the difference between these complex and high-rise apartments is getting smaller, and these two kind of high-rise residences are becoming new residential style in Korea. And these high-rise residences are considered the symbol of wealth owing to the marketing strategy emphasizing high quality, refined interior, a fair view, and the protection of privacy. However, high-rise residences bring about many problems related to health and psychology caused by the consumption of a large amount of energy, pollutant emission, the deterioration of the quality of indoor air, and vibration. For this reason, in this study, we tried to emphasize the necessity of environment-friendly access to provide healthy living environment and to reduce the negative effect of housing life in high-rise residences, and find the method to improve environment-friendly quality and health of residents in interior space. Therefore, this study aims to detect the problems and the items to be improved of interior spaces of high-rise residences by quantitative, qualitative analysis of the evaluation elements and the floor planning elements deduced from environment-friendly architectural certification in Korea and the other countries, and suggest the guideline to improve the environment-friendly quality of these interior spaces.

The Optimum Design of Impact Absorbing System for Spreader in System Variations (스프레더용 충격흡수기의 시스템 변화에 따른 최적설계)

  • Hong, Do-Kwan;Kim, Dong-Young;Han, Dong-Seop;Ahn, Chan-Woo;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.311-316
    • /
    • 2002
  • On this study, to develop the impact absorbing system for spreader, we operated the dynamic response for models of three types consisting of spring and oil damper by the finite element analysis. Also, in the three types of impact absorbing system, we set the restricted stroke of piston to the static variables and the optimum design was operated to have the minimum value of the reaction force for the impact. As the result, the direct model of two degree of freedom system has lowest value, the model of one degree of freedom system has higher value than that and the parallel model of two degree of freedom system has the highest value. And we studied the effect that the change of spring constant and damping coefficient affect to the reaction force and as the result of the optimum design, we found that reaction force has the lowest value in the each of models.

Seismic Performance of RC Frame System Retrofitted with TS Seismic Strengthening Method (Part 1:Analytical Study) (TS 제진공법으로 내진보강된 철근콘크리트 골조의 내진성능(Part 1:해석적 연구))

  • Jung, Myung-Cheol;Song, Jeong-Weon;Song, Jin-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.141-147
    • /
    • 2018
  • In this study, a cyclic loading test was carried out for a reinforced concrete frame installed a TS(tension-spring) damper for the purpose of verifying the seismic strengthening effect of the TS seismic reinforcing method. The test specimens are four specimens of non - reinforced frame and three reinforced frame specimens. Experimental parameters are Shape of damper and construction method of damper. As a result, the construction method of inserting type inside window was twice as much in terms of strength and stiffness, and the method of externally attached type showed a performance improvement of about 2 times in terms of energy dissipation. From these results, it can be confirmed that the TS seismic reinforcing method is a superior method for field application and seismic strengthening.

Investigation of Microstructure and Mechanical Properties of KR60 Rail (KR60 레일의 미세조직과 기계적 물성 평가)

  • Choi, Wookjin;Cho, Hui Jae;Yun, Kyung-Min;Min, Kyung-Hwan;Lim, Nam-Hyoung;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.652-657
    • /
    • 2017
  • The use of continuous welded rail is increasing because of its many advantages, including vibration reduction, enhanced driving stability, and maintenance cost savings. In this work, two different types of continuous welded rails were examined to determine the influence of repeated wheel-rail contact on the crystal structure, microstructure and mechanical properties of the rails. The crystal structure was determined by x-ray diffraction, and the microstructure was examined using optical microscopy and scanning electron microscopy. Tensile and microhardness tests were conducted to examine the mechanical behaviors of prepared specimens taken from different positions in the cross section of both newly manufactured rail and worn rail. Analysis revealed that both the new and worn rail had a mixed microstructure consisting of ferrite and pearlite. The specimens from the top position of each rail exhibited decreased lamella spacing of the pearlite and increased yield strength, ultimate tensile strength and hardness, as compared with those from other positions of the rail. It is thought that the enhanced mechanical property on the top position of the worn rail might be explained by a mixed effect resulting from a directional microstructure, the decreased lamella spacing of pearlite, and work hardening by the repeated wheel-rail contact stress.

The Effects of Thermal Decomposition of Tetrakis-ethylmethylaminohafnium (TEMAHf) Precursors on HfO2 Film Growth using Atomic Layer Deposition

  • Oh, Nam Khen;Kim, Jin-Tae;Ahn, Jong-Ki;Kang, Goru;Kim, So Yeon;Yun, Ju-Young
    • Applied Science and Convergence Technology
    • /
    • v.25 no.3
    • /
    • pp.56-60
    • /
    • 2016
  • The ALD process is an adequate technique to meet the requirements that come with the downscaling of semiconductor devices. To obtain thin films of the desired standard, it is essential to understand the thermal decomposition properties of the precursors. As such, this study examined the thermal decomposition properties of TEMAHf precursors and its effect on the formation of $HfO_2$ thin films. FT-IR experiments were performed before deposition in order to analyze the thermal decomposition properties of the precursors. The measurements were taken in the range of $135^{\circ}C-350^{\circ}C$. At temperatures higher than $300^{\circ}C$, there was a rapid decrease in the absorption peaks arising from vibration of $Sp^3$ C-H stretching. This showed that the precursors experienced rapid decomposition at around $275^{\circ}C-300^{\circ}C$. $HfO_2$ thin films were successfully deposited by Atomic Layer Deposition (ALD) at $50^{\circ}C$ intervals between $150^{\circ}C$ to $400^{\circ}C$; the deposited films were characterized using a reflectometer, X-ray photoelectron spectroscopy (XPS), Grazing Incidence X-ray Diffraction (GIXRD), and atomic force microscopy (AFM). The results illustrate the relationship between the thermal decomposition temperature of TEMAHf and properties of thin films.

Establishment of the Measurement System of the Magnetic Field for the Study on the Magnetic Field Tolerance of TMP

  • Baik, Kyungmin;Cheung, Wan-Sup;Lim, Jong-Yeon;Choi, Kyoung-Min;Nam, Seung-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.106.1-106.1
    • /
    • 2013
  • When strong static magnetic field is applied to the TMP, it is expected that the presence of the magnetic field might retard the velocity of the blades which results in the change of the pumping speed of the TMP. However, such effect of the magnetic field on the TMP has not been well characterized. Thus, under the strong magnetic field, monitoring pumping speed as well as generated heat, pressure, and vibration of the TMP may be an important issue to understand the magnetic field tolerance of the TMP and the development of magnetic shielding technique for the key components of the pump. For this purpose, magnetic field generation system to the vertical direction by a circular current source was firstly designed and suggested [K. Baik et al., 44th Annual Conf. KVS, 22(1), 153, (2012)]. In the current study, another magnetic field generation systems are presented to apply the magnetic field to the horizontal and radial directions by the rectangular current sources and the permanent magnets respectively. Such systems were made to generate at least 50 Gauss of magnetic field along the vertical direction and at least 25 Gauss of magnetic field along the horizontal or radial direction. Current study introduces the evaluation system of the magnetic field along the vertical, horizontal, and radial directions and presents the measured experimental results of the magnetic field when such systems are combined with the equipment where TMP will be installed.

  • PDF

Relationship between Dielectric Constant and Increament of Si-O bond in SiOC Film (SiOC 박막에서 Si-O 결합의 증가와 유전상수의 관계)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4468-4472
    • /
    • 2010
  • SiOC films made by the inductively coupled plasma chemical vapor deposition were researched the relationship between the dielectric constant and the chemical shift. SiOC film obtained by plasma method had the main Si-O-C bond with the molecule vibration mode in the range of $930{\sim}1230\;cm^{-1}$ which consists of C-O and Si-O bonds related to the cross link formation according to the dissociation and recombination. The C-O bond originated from the elongation effect by the neighboring highly electron negative oxygen atoms at terminal C-H bond in Si-$CH_3$ of $1270cm^{-1}$. However, the Si-O bond was formed from the second ionic sites recombined after the dissociation of Si-$CH_3$ of $1270cm^{-1}$. The increase of the Si-O bond induced the redshift as the shift of peak in FTIR spectra because of the increase of right shoulder in main bond. These results mean that SiOC films become more stable and stronger than SiOC film with dominant C-O bond. So it was researched that the roughness was also decreased due to the high degree of amorphous structure at SiOC film with the redshift after annealing.

Thermo-structural Analysis for Radiation-Cooled Nozzle Extension of Thrust Chamber (복사냉각방식 연소기 노즐확장부 열/구조해석)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.291-295
    • /
    • 2011
  • Thermo-structural analysis was performed for a radiation-cooled nozzle extension of thrust chamber. A Niobium alloy that is known to be a high-performance refractory alloy was used. Since area ratio of the nozzle extension is larger than that of nozzle divergence part, its size also becomes larger. For this reason, it is important to minimize the thickness of nozzle extension to reduce its weight. For the purpose of weight minimization, the thickness of nozzle extension was varied from 1.0 mm to 0.4 mm and structural stability was evaluated for each case. Analysis results showed that nozzle extension with thickness of 0.4 mm is structurally stable for the operation condition. The effect of combustion-included vibration will be additionally considered in the future.

  • PDF