• Title/Summary/Keyword: vibration displacement measurement

Search Result 172, Processing Time 0.028 seconds

A Study on Displacement Measurement by A Laser Interferometry using Common-path Fiber-optical Devices

  • Lee, Seok-Soon;Lee, Dong-Wook;Park, Min-Hyeok;Choi, Jin-Gyu;Nam, Kwang-Sik;Zhao, Shang
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.29-33
    • /
    • 2014
  • A displacement measurement system that uses fiber-optical common-path interferometry has been developed. The system includes fiber-optic devices and a collimator attached to a linear translation stage. The interferometry effect was detected with a photodetector whose signal was measured on an oscilloscope. Experiments showed that vibration of the stage disturbed the signal by causing nanoscale interference. Under stable conditions, the measured distance was the almost the same as the value calculated from the linear translation stage parameters.

A Study on the Measurement of New Concept for the Contact Force between Rail and Wheel (신개념의 레일.차륜간 접촉력 측정에 관한 연구)

  • Hong, Yong-Ki;You, Won-Hee;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.806-811
    • /
    • 2007
  • The derailment is defined as phenomena in which the wheels run off the rail due to inordinate lateral force generated when wheel flange contacts with the rail. Derailment coefficient is typical standard assessing running safety and derailment. The traditional method measuring by strain gage adhered to wheels is very complicated and easy to fail. It also requires too much cost and higher measurement technique. Therefore it can hardly ensure safety because we can't confirm at which time we need to identify safety. In this paper, we principally researched the method measuring easily wheel load generated by contacts between wheel flange and the rail, and lateral force. Correlation of vibration and displacement which was related physical amounts of wheel load and lateral force, was investigated and analyzed through analysis, experiment and measurement. And it is presents new measurement method of derailment coefficient which can estimate derailment possibility only by movement of vibration and displacement, by which we understand the rate for acceleration and displacement to contribute wheel load and lateral force and compare actual data of wheel load and lateral force measured from wheel.

Measurement of Dynamic Characteristics on Structure using Non-marker Vision-based Displacement Measurement System (비마커 영상기반 변위계측 시스템을 이용한 구조물의 동특성 측정)

  • Choi, Insub;Kim, JunHee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.301-308
    • /
    • 2016
  • In this study, a novel method referred as non-marker vision-based displacement measuring system(NVDMS) was introduced in order to measure the displacement of structure. There are two distinct differences between proposed NVDMS and existing vision-based displacement measuring system(VDMS). First, the NVDMS extracts the pixel coordinates of the structure using a feature point not a marker. Second, in the NVDMS, the scaling factor in order to convert the coordinates of a feature points from pixel value to physical value can be calculated by using the external conditions between the camera and the structure, which are distance, angle, and focal length, while the scaling factor for VDMS can be calculated by using the geometry of marker. The free vibration test using the three-stories scale model was conducted in order to analyze the reliability of the displacement data obtained from the NVDMS by comparing the reference data obtained from laser displacement sensor(LDS), and the measurement of dynamic characteristics was proceed using the displacement data. The NVDMS can accurately measure the dynamic displacement of the structure without the marker, and the high reliability of the dynamic characteristics obtained from the NVDMS are secured.

Development of Optical Fiber Displacement Sensor for Non-contact Vibration Measurement in the High Speed Rotation System (고속회전체의 진동 측정용 비접촉 광섬유 변위센서 개발)

  • Lee, Kee-Seok;Hong, Jun-Hee;Shin, Woo-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.50-56
    • /
    • 2005
  • This paper is described a development of an optical fiber displacement sensor. The optical fiber sensor using an intensity modulated measures the displacement between target and sensor. A prototype sensor is composed of a transmitting part, a receiving part and a signal processing circuit. The experiment was conducted not only the sensor performance but also factors that affect intensity. The main performance of this sensor is resolution of 0.37um and the non-linearity $0.7\%$ FS and the dynamic bandwidth of about 6.3kHz. As a result of rotation test, the prototype sensor showed an equivalent performance to a commercial eddy current sensor.

A Study on Cable Tension Estimation Using Smartphone Built-in Accelerometer and Camera (스마트폰 내장 가속도계와 카메라를 이용한 케이블 장력 추정에 관한 연구)

  • Lee, Hyeong-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.773-782
    • /
    • 2022
  • Estimation of cable tension through proper measurements is one of the essential tasks in evaluating the safety of cable structures. In this paper, a study on cable tension estimation using the built-in accelerometer and camera in a smartphone was conducted. For the experimental study, visual displacement measurement using a smartphone camera and acceleration measurement using a built-in accelerometer were performed in the cable-stayed bridge model. The estimated natural frequencies and transformed tensions from these measurements were compared with the theoretical values and results from the normal visual displacement method. Through comparison, it can be seen that the error between the method using the smartphone and the normal visual displacement is sufficiently small to be acceptable. It has also been shown that those errors are much smaller than the difference between the values calculated by the theoretical model. These results show that the deviation according to the type of measurement method is not large and it is rather important to use an appropriate mathematical model. In conclusion, in the case of cable tension estimation, it can be said that the visual displacement measurement and acceleration using a smartphone can be a sufficiently applicable method, just like the normal visual displacement method. It is also noteworthy that the smartphone accelerometer has a larger magnitude error and has more limitations such as high-frequency sampling instability compared to the visual displacement method, but shows almost the same performance as the visual displacement method in this cable tension estimation.

MULTI-POINT MEASUREMENT OF STRUCTURAL VIBRATION USING PATTERN RECOGNITION FROM CAMERA IMAGE

  • Jeon, Hyeong-Seop;Choi, Young-Chul;Park, Jin-Ho;Park, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.704-711
    • /
    • 2010
  • Modal testing requires measuring the vibration of many points, for which an accelerometer, a gab sensor and laser vibrometer are generally used. Conventional modal testing requires mounting of these sensors to all measurement points in order to acquire the signals. However, this can be disadvantageous because it requires considerable measurement time and effort when there are many measurement points. In this paper, we propose a method for modal testing using a camera image. A camera can measure the vibration of many points at the same time. However, this task requires that the measurement points be classified frame by frame. While it is possible to classify the measurement points one by one, this also requires much time. Therefore, we try to classify multiple points using pattern recognition. The feasibility of the proposed method is verified by a beam experiment. The experimental results demonstrate that we can obtain good results.

A Study on a Displacement Measurement Method of Magnetic Levitation System Applying the Inductance Characteristic (인덕턴스 특성을 이용한 자기부상계의 변위 측정의 한 방법에 관한 연구)

  • 김창화;양주호
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.357-362
    • /
    • 1996
  • The magnetic levitation system has great advantages, such as little friction, no lubrication, no noise and so on. But the magnetic levitation system need a stabilizing controller because it is a unstable, system in natural and it need a sensor for displacement measurement to control the system. In this paper, we proposed a sensorless method to measure the gap between the magnetic pole and the levitated object with application the inductance characteristic which vary according to gap. We made a driving circuit which supply simultaneously the control input PWM(Pulse Width Modulation) signal and the carrier PWM signal to estimate the gap. Because the inductance is a function of gap, and the current of the carrier signal is a function of the inductance, we could estimate the gap from the measurement of the current of the carrier signal. Finally, we investigated the validity of the proposed method through the experimental results.

  • PDF

A Study on the Field Application of the Measurement Technique for Static Displacement of Bridge Using Ambient Vibration (상시 진동을 이용한 교량 정적 처짐 산정 기술의 현장 적용성 연구)

  • Sang-Hyuk Oh;Dae-Joong Moon;Kwang-Myong Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In safety assessment of a aged bridge, dynamic characteristics and displacement are directly related to the rigidity of the structural system, especially displacement is the most important factor as the physical quantity that the bridge user can directly detect. However, in order to measure the displacement of the bridge, it is difficult to install displacement sensors at the bottom of the bridge and conduct traffic blocking and loading tests, resulting in increased costs or impossible measurements depending on the bridge's environment. In this study, a method of measuring the displacement of a bridge using only accelerometers without installing displacement sensors and ambient vibration without a loading test was proposed. For the analysis of bridge dynamic characteristics and displacement using ambient vibration, the mode shape and natural frequency of the bridge were extracted using a TDD technique known to enable quick analysis with simple calculations, and the unit load displacement of the bridge was analyzed through flexibility analysis to calculate static displacement. To verify this proposed technology, an on-site test was conducted on C Bridge, and the results were compared with the measured values of the loading test and the structural analysis data. As a result, it was confirmed that the mode shape and natural frequency were 0.42 to 1.13 % error ratio, and the maximum displacement at the main span was 3.58 % error ratio. Therefore, the proposed technology can be used as a basis data for indirectly determine the safety of the bridge by comparing the amount of displacement compared to the design and analysis values by estimating the displacement of the bridge that could not be measured due to the difficulty of installing displacement sensors.

Establishment of Response Instrumentation Test Acceptance Criteria for APR1400 Reactor Vessel Internals Comprehensive Vibration Assessment Program (APR1400 원자로내부구조물 종합진동평가 응답측정시험 허용기준 수립)

  • Ko, Do-Young;Kim, Kyu-Hyung;Kim, Sung-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.212-218
    • /
    • 2011
  • APR1400 RVI CVAP using the non-prototype category is being conducted to verify integrity of the RVI design and to secure the CVAP technology. The measurement programs are to confirm vibration analysis results for reactor internals during preoperational and initial startup testing and to detemine the safety margin. One of the important basis for the measurement programs is test acceptance criteria. Therefore, this paper is on establishment of response instrumentation test acceptance criteria for APR1400 RVI CVAP. The established acceptance criteria show that the stress criteria of APR1400 RVI are more conservative values than those of the valid prototype plant(Palo Verde unit 1) and, the displacement criteria of the IBA and the UGS were established to 0.03 in and 0.01 in, respectively.

  • PDF

Application of Digital Image Correlation Method for Measurement of Rock Pillar Displacement and Vibration Due to Underground Mine Blasting (지하 광산발파에 따른 암반광주의 변위 및 진동 측정을 위한 이미지 영상 상관법 적용연구)

  • Ko, Young-Hun;Seo, Seung-Hwan;Lim, Hyun-Sung;Jin, Tai-Lie;Chung, Moon-Kyung
    • Explosives and Blasting
    • /
    • v.37 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • In this study the applicability of a Digital Image Correlation (DIC) method was investigated by measuring the displacement and vibration of rock pillar due to underground mining blasting. When combined with a high speed photography technology, the DIC method provides an excellent photographic image processing ability that can be used to convert the evolving full-field surface properties of structures to 2D or 3D set of coordinate values. The measured coordinate sets are then used to calculate the displacement, strain, and velocity of the target structure. This technique is widely used in science and engineering, and continuously finds its new application areas. In this study, the DIC system and the conventional seismograph were compared for their ability to measure the displacement and vibration produced by blasting. In the field test both methods showed similar results. Thus, it is concluded that the DIC method is feasible to measure the ground displacements and vibrations from blasting.