• Title/Summary/Keyword: vibration controls

Search Result 105, Processing Time 0.026 seconds

선박용 동흡진기 시스템에 관한 연구 - 중력진자식 및 원심진자식 동흡진기에 대한 - (A Study on the Control System of Dynamic Vibration Absorber for Ship Superstructure)

  • 김사수;한성용;엄재광;현명환;김재홍;김명현;이도경
    • 대한조선학회논문집
    • /
    • 제32권3호
    • /
    • pp.1-18
    • /
    • 1995
  • 중력진자식과 원심진자식의 두가지 형의 소형동흡진기를 이용한 구조물 진동의 제어시스템을 개발하였다. 개발된 본 시스템은 step 및 servo motor, 소형흡진기, metor drive unit와 제어장치로 구성되어 있으며, 구조물의 진동을 수진기로 감지하고, 이 신호를 받아 소형흡진기의 기능을 최적 제어하여 구조물의 진동을 제어한다. 제어시스템의 제어성능 검증시험을 위해 상자형 강판구조물($L{\times}W{\times}H{\times}T=800mm{\times}700mm{\times}1500mm{\times}7mm$) 중량 180kg를 제작하여 시험을 수행하였으며, 실험결과 중력진자식 흡진기는 95%의 흡진성능을, 원심진자식 흡진기는 88%의 흡진성능을 가지게 됨이 확인되었다.

  • PDF

Analytical and experimental investigations on the performance of tuned liquid column ball damper considering a hollow ball

  • Shah, Mati Ullah;Usman, Muhammad;Kim, In-Ho;Dawood, Sania
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.655-669
    • /
    • 2022
  • Passive vibration control devices like tuned liquid column dampers (TLCD) not only significantly reduce buildings' vibrations but also can serve as a water storage facility. The recently introduced modified form of TLCD known as tuned liquid column ball damper (TLCBD) suppressed external vibration efficiently compared to traditional TLCD. For excellent performance, the mass ratio of TLCBD should be in the range of 5% to 7%, which does not include the mass of the ball. This additional mass of the ball increases the overall structure mass. Therefore, in this paper, an effort is made to reduce the mass of TLCBD. For this purpose, a new modified version of TLCBD known as tuned liquid column hollow ball damper (TLCHBD) is proposed. The existing mathematical modeling of TLCBD is used for this new damper by updating the numerical values of the mass and mass moment of the ball. Analytically the optimal design parameters are obtained. Numerically the TLCHBD is investigated with a single degree of freedom structure under harmonic and seismic loadings. It is found that TLCHBD performance is similar to TLCBD in both loadings' cases. To validate the numerical results, an experimental study is conducted. The mass of the ball of TLCHBD is reduced by 50% compared to the ball of TLCBD. Both the arrangements are studied with a multi-degree of freedom structure under harmonic and seismic loadings using a shake table. The results of the experimental study confirm the numerical findings. It is found that the performance behavior of both the dampers is almost similar under harmonic and seismic loadings. In short, the TLCHBD is lighter in weight than TLCBD but has a similar vibration suppression ability.

리니어모터 스테이지 편요오차 보상장치 제어 (Control for a Yaw Error Compensation System of Linear Motor Stage)

  • 이승현;강민식
    • 한국소음진동공학회논문집
    • /
    • 제18권10호
    • /
    • pp.997-1005
    • /
    • 2008
  • Linear motor stage is a useful device in precision engineering field because of its simple power transmission mechanism and accurate positioning. Even though linear motor stage shows fine positioning accuracy along travel axis, geometric dependent errors which relay on machining and assembling accuracy should be addressed to increase total positioning performances. In this paper, we suggests a cost effective yaw error compensation servo-system which is mounted on platform of the stage and nullify travel position dependent yaw error. This paper also provides a method of designing a sliding mode control which is robust to existing friction disturbance and model uncertainties. The reachability condition of slinding mode control for the yaw error compensating servo-system has been established. From some experimental results by using an experimental set-up, the sliding mode control showed its effective in disturbance rejection and its performance was superior to conventional linear controls.

승용차량 구동축의 작용력에 따른 진동특성 연구 (A Study on the Characteristics of Vibration Due to the Forces of Drive Shaft)

  • 사종성;강태원
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.708-716
    • /
    • 2013
  • This study aims to understand the applied forces and related vibrational characteristics of a tripod joint (TJ), which is mostly used in front-drive-type middle-sized sedans in South Korea. The plunging force (PF) and generated axial force (GAF) are the most influential quantities related to the vibrational characteristics of a driveshaft. To obtain meaningful data, specially designed tests were performed using MTS test sets. The results of direct measurements reveal that higher PF and GAF values appear to worsen the vibrational characteristics of the vehicle. On the other hand, the measured apparent mass is useful for calculating the applied forces for a short driveshaft that has no dynamic vibration absorber. Among diversely controlled samples, it shows that the viscosity and tight fit are very sensitive to shudder vibrations of the vehicle. Therefore, these are good design factors for quality controls in the production line of constant-velocity joints.

흡음재 및 제진재의 최적배치를 이용한 구조-음향 연성계의 소음제어 (Sound Control of Structural-acoustic Coupling System Using Optimum Layout of Absorbing Material and Damping Material)

  • 김동영;홍도관;안찬우
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.161-168
    • /
    • 2005
  • The absorbing material is mostly used to changing the acoustic energy to the heat energy in the passive control, and that consists of the porous media. That controls an air borne noise while the stiffened plates, damping material and additional mass control a structure borne noise. The additional mass can decrease the sound by mass effect and shift of natural frequency, and damping material can decrease the sound by damping effect. The passive acoustic control using these kinds of control materials has an advantage that is possible to control the acoustic in the wide frequency band and the whole space at a price as compared with the active control using the various electronic circuit and actuator. But the space efficiency decreased and the control ability isn't up to the active control. So it is necessary to maximize the control ability in the specific frequency to raise the capacity of passive control minimizing the diminution of space efficiency such an active control. Therefore, the characteristics of control materials and the optimum layout of control materials that attached to the boundary of structure-acoustic coupled cavity were studied using sequential optimization on this study.

차량용 공조 팬의 소음 저감에 대한 실험적 연구 (Experimental Study on Noise Reduction of Fan for Automotive Air Conditioner)

  • 이진갑;정병훈
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.51-56
    • /
    • 2013
  • 본 논문은 철도 차량에 사용하는 라인 플로우 팬의 소음 저감을 위해 소음원을 규명하여 저감하는 실험적인 연구이다. 라인 플로우 팬의 소음은 공기 유동에 의한 난류성 유동 및 랜덤성 소음, 블레이드 통과 주파수(681Hz)의 소음, 모터 회전에 의한 로터의 불균형(28.4Hz)의 구조물 진동에 의한 소음 등 여러 요인에 의해 발생된다. 각각의 소음원에 대해 대책을 수립하여 하우징 가이드 각도 및 거리 조정, 유동 통로의 형상 변경, 로터 밸런싱을 통해 총 5.7dB(A)의 소음을 저감하였다.

슬롯 링 형상을 갖는 전기 유변 스퀴즈 필름 댐퍼로 지지된 연성 로터의 동특성 및 최적설계 파라미터 실험 연구 (Experimental Parametric Study on the Rotordynamic Characteristics and Optimal Design of a Flexible Rotor Supported by a Slotted-Ring Electro-Rheological Squeeze Film Damper)

  • 이용복;김창호;이남수;최동훈;정시영
    • Tribology and Lubricants
    • /
    • 제16권3호
    • /
    • pp.157-165
    • /
    • 2000
  • A discharge free Electro-Rheological Squeeze Film Damper (ER-SFD) with predetermined-clearances at leakage ends can inherently eliminate electric discharge problems while still supplying stable leakage control. Test results show that the damping force of the slotted-ring ER-SFD is mainly affected by electric voltage, oil supply pressure, position of the damper and ratio of effective surface area of slotted-rings. As the supply voltage is larger, the amplitudes of both slotted ER-SFD and rotor are decreased at first and second critical speeds. The influence of the oil supply pressure and the effective surface area ratio was shown mainly near the first critical speed. The effective surface area ratio of slotted-rings influences the reduction of flexible rotor vibration. As a result, experimental results confirm that the slotted-ring ER-SFD satisfactorily controls the flexible rotor vibration, while eliminates the inherent electric discharge problems in conventional ER-SFDs.

Superharmonic vibrations of sandwich beams with viscoelastic core layer with the multiple scale method

  • Benaoum, Abdelhak;Youzera, Hadj;Abualnour, Moussa;Houari, Mohammed Sid Ahmed;Meftah, Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.727-736
    • /
    • 2021
  • In this work, mathematical modeling of the passive vibration controls of a three-layered sandwich beam under hard excitation is developed. Kelvin-Voigt Viscoelastic model is considered in the core. The formulation is based on the higher-order zig-zag theories where the normal and shear deformations are taken into account only in the viscoelastic core. The dynamic behaviour of the beam is represented by a complex highly nonlinear ordinary differential equation. The method of multiple scales is adopted to solve the analytical frequency-amplitude relationships in the super-harmonic resonance case. Parametric studies are carried out by using HSDT and first-order deformation theory by considering different geometric and material parameters.

Experimental and numerical study on the dynamic behavior of a semi-active impact damper

  • Zheng Lu;Mengyao Zhou;Jiawei Zhang;Zhikuang Huang;Sami F. Masri
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.455-467
    • /
    • 2023
  • Impact damper is a passive damping system that controls undesirable vibration with mass block impacting with stops fixed to the excited structure, introducing momentum exchange and energy dissipation. However, harmful momentum exchange may occur in the random excitation increasing structural response. Based on the mechanism of impact damping system, a semi-active impact damper (SAID) with controllable impact timing as well as a semi-active control strategy is proposed to enhance the seismic performance of engineering structures in this paper. Comparative experimental studies were conducted to investigate the damping performances of the passive impact damper and SAID. The extreme working conditions for SAID were also discussed and approaches to enhance the damping effect under high-intensity excitations were proposed. A numerical simulation model of SAID attached to a frame structure was established to further explore the damping mechanism. The experimental and numerical results show that the SAID has better control effect than the traditional passive impact damper and can effectively broaden the damping frequency band. The parametric studies illustrate the mass ratio and impact damping ratio of SAID can significantly influence the vibration control effect by affecting the impact force.

Design and Development of Sprinkler Control System Utilizing Mobile with IoT

  • Kang, Tae-Sun;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권4호
    • /
    • pp.212-217
    • /
    • 2020
  • We studied on the design of a sprinkler control system that communicates with the administrator's mobile through a wireless communication network and a sprinkler unit that sprays water on the vegetation area. This sprinkler control system consists of a communication module that receives an operation signal for the operation of the sprinkler unit from the administrator's mobile, and a control module that controls the sprinkler unit according to the operation signal received through the communication module. It is also designed to control sprinkler units by measuring temperature, humidity, light intensities, vibration and field images in the vegetation area in real time through sensors and camera for each of them and comparing them with established limit criteria. The sprinkler allows the administrator to control the sprinkler more easily because the administrator operates the sprinkler through the mobile from a distance, and emergency situations occur and can respond quickly.