• Title/Summary/Keyword: vibrating .sample

Search Result 205, Processing Time 0.027 seconds

Study of Human Tactile Sensing Characteristics Using Tactile Display System (질감 제시 장치를 이용한 촉감인지 특성 연구)

  • Son Seung-Woo;Kyung Ki-Uk;Yang Gi-Hun;Kwon Dong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.451-456
    • /
    • 2005
  • This paper describes three kinds of experiments and analysis of their results related to human tactile sensitivity using an integrated tactile display system. The device can provide vibration, normal pressure and lateral slip/stretch which are important physical quantities to sense texture. We have tried to find out the efficient method of stimulating, limitation of surface discrimination by kinesthetic farce feedback and the effectiveness of the combination of kinesthetic force and tactile feedback. Seven kinds of different stimulating methods were carried out and they are single or combination of the kinesthetic force, normal static pressure, vibration, active/passive shear and moving wave. Both prototype specimen and stimulus using tactile display were provided to all examinees and they were allowed to answer the most similar sample. The experimental results show that static pressure is proper stimulus for the display of micro shape of the surface and vibrating stimulus is more effective for the display of fine surface. And the sensitivities of active touch and passive touch are compared. Since kinesthetic force feedback is appropriate to display shape and stiffness of an object, but roughness display has a limitation of resolution, the concurrent providing methods of kinesthetic and tactile feedback are applied to simulate physical properties during touching an object.

Effect of Boron Additions on Glass Formation and Magnetic Properties of Fe-Co-Ti-Zr-B Amorphous Ribbons

  • Kim, Sumin;Han, Bo Kyeong;Choi-Yim, Haein
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.164-167
    • /
    • 2016
  • The effect of the B additions on glass formation and magnetic properties is reported for the $Fe_{(87-x-y)}Co_yTi_7Zr_6B_x$ (x = 2, 4, 6 and y = 35, 40) alloy system. The ribbon samples with the width of 2 mm for each composition were prepared by the melt spinning technique; furthermore, their phase information was obtained from X-ray diffraction. Glass formation and magnetic properties were measured using differential scanning calorimetry and vibrating sample magnetometer respectively. The $Fe_{45}Co_{40}Ti_7Zr_6B_2$ (x = 2 and y = 40) system has the nanocrystalline phase identified as ${\alpha}-Fe$, as well as the amorphous phase, whereas all other alloys are fully amorphous. It is associated with the role of B on the glass formation. The widest supercooled liquid region is obtained as 71 K at x = 4 (both y = 35 and 40). The saturation magnetization decreases with the increase of the amount of the B addition, and the highest value is 1.59 T as x = 2 and y = 35 for this alloy system.

Effect of Shape Magnetic Anisotropy of Amorphous Fe-B-P Nanoparticles on Permeability

  • Lee, Ji Eun;Tsedenbal, Bulgan;Koo, Bon Heun;Huh, Seok Hwan
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.589-594
    • /
    • 2020
  • Many electronic applications require magnetic materials with high permeability and frequency properties. We improve the magnetic permeability of soft magnetic powder by controlling the shape magnetic anisotropy of the powders and through the preparation of amorphous nanoparticles. For this purpose, the effect of the shape magnetic anisotropy of amorphous Fe-B-P nanoparticles is observed through a magnetic field and the frequency characteristics and permeability of these amorphous nanoparticles are observed. These characteristics are investigated by analyzing the composition of particles, crystal structure, microstructure, magnetic properties, and permeability of particles. The composition, crystal structure, and microstructure of the particles are analyzed using inductively coupled plasma optical emission spectrometry-, X-ray diffraction, scanning electron microscopy and focused ion beam analysis. The saturation magnetization and permeability are measured using a vibrating sample magnetometer and an LCR meter, respectively. It is confirmed that the shape magnetic anisotropy of the particles influences the permeability. Finally, the permeability and frequency characteristics of the amorphous Fe-B-P nanoparticles are improved.

Preparation of Co-Cr Thin Films by Facing Targets Sputtering (대향타겟스퍼터링에 의한 Co-Cr 박막의 제작)

  • ;;;;;S. Nakagawa;M.Naoe
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.418-422
    • /
    • 1998
  • The Co-Cr films are one of the most suitable candidates for perpendicular magnetic recording media. The facing targets sputtering(FTS) system has a advantage of preparing films over a wide range of working gas pressure on plasma-free substrate. In this study, we investigated the possibility of employing FTS system for depositing Co-Cr films. The Co-Cr thin films were deposited with various sputter gas pressure($P_Ar$, 0.1~10mTorr) by using FTS apparatus at temperature of $40^{\circ}C and 220^{\circ}C$, respectively. Crystallographic and magnetic characteristics were evaluated by x-ray diffractometry (XRD) and vibrating sample magnetometer(VSM), respectively. Under argon gas pressure at 0.1mTorr, films with morphologically dense microstructure, good c-axis orientation and higher coercivity were obtained. It has been confirmed that the FTS system is very useful for preparing Co-Cr thin film recording media.

  • PDF

Evaluation of the Natural Quartz with Diamagnetic and Microstructural Characterization (천연수정의 자기적 특성과 미세구조에 의한 품질평가)

  • 송오성;이기영;이정임
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.1
    • /
    • pp.27-30
    • /
    • 2003
  • Amethyst is a precious stone in Korea. As natural quartz are usually mixed with smoky quartz, amethyst, and milky quartz, we need to evaluate the amount of the amethyst quantitatively in ores. Although the optical evaluation with bare eyes has been common in assay so far, we propose that the diamagnetic property and microstructural difference characterization be the solution for the evaluating the quartz ores. In addition, FTIR (Fourier transformation infra-red) could help to identify the amethyst transparency. We report that we could evaluate the amethyst quantitatively with M-H hysteresis characterization, transmission electron microscopy (TEM) observation and FTIR characterization.

  • PDF

Magnetizing Analysis of a Convergence Purity Magnet using Preisach model and Finite Element Method (프라이자흐 모델과 유한요소법을 이용한 C.P.M의 착자 특성 해석)

  • Yoon, Tae-Ho;Kwon, Byung-Il;Park, Seung-Chan;Woo, Kyung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.11
    • /
    • pp.729-736
    • /
    • 2000
  • This paper deals with the characteristic analysis of magnetizer for convergence purity magnet by the finite element method. The analysis utilizes combined method of the time-stepped finite element analysis and the Preisach model with hysteresis phenomena. In the finite element analysis, the non-linearity and the eddy current of the magnetizing fixure and permanent-magnet are taken account. The magnetization distribution in the permanent magnet is determined by using Preisach model which are composed of Everett function table and the first order transition curves is obtained by the Vibrating Sample Magnetometer. The calculated flux density values on the surface of the permanent magnet are led to the approximated gauss density values measured by the gauss meter. As a result, winding current, copper loss, eddy current loss of the magnetizing yoke, flux plot, surface gauss plot, temperature rise of the coil and resistor variation, vector diagram of magnetization distribution are shown.

  • PDF

Crystallization of FePt/MgO(100) magnetic thin films (FePt/MgO(100) 자성박막의 결정화 연구)

  • Jeung, Ji-Wook;Cho, Tae-Sik;Yi, Min-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.278-279
    • /
    • 2005
  • The crystallization of FePt/MgO(100) magnetic thin films of various thicknesses has been studied using synchrotron x-ray scattering, atomic force microscope, and vibrating sample magnetometer. In film with a 500-${\AA}$-thick, ordered (fct) FePt phase was dominantly crystallized into perpendicular (001) grains keeping the magnetically easy c-axis normal to the film plane during annealing. In film with a 812-${\AA}$-thick, however, longitudinal (110) grains keeping the c-axis parallel to the film plane were grown on top of the perpendicular (001) grains. The behavior of the magnetic properties was consistent with the thickness dependence of the crystallization. We attribute the thickness dependence of the crystallization to the substrate effect, which prefers the growth of the c-axis oriented perpendicular grains near the film/substrate interfacial area.

  • PDF

Enhanced Electromagnetic Properties of Nickel Nanoparticles Dispersed Carbon Fiber via Electron Beam Irradiation (전자선 안정화에 의한 니켈 나노 입자가 분산된 탄소섬유의 전자기적 특성 향상)

  • Lee, Yeong Ju;Kim, Hyun Bin;Lee, Seung Jun;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat-treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications.

THE TEMPERATURE DEPENDENCE OF THE MAGNETIZATION OF THE AMORPHOUS $Co_{80+x}TM_{12}B_{8-x}$ (TM = Ti, Zr, Hf, Nb) ALLOYS

  • Han, Seung-Man;Yu, Seong-Cho;Kim, Kwang-Youn;Noh, Tae-Hwan;Kim, Hi-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.496-499
    • /
    • 1995
  • Amorphous $Co_{80+x}TM_{12}B_{8-x}$ (TM = Ti, Zr, Hf, Nb and x = 0, 2, 4 at%) alloys were prepared by single roll melt spinning technique. Saturation magnetization of the amorphous ribbons was measured by SQUID and vibrating sample magnetometer from 5 to 800 K under applied fields up to 10 kOe. Typical thermo-magnetization curves were observed and the average values of the spectroscopic splitting g factor were estimated from the ferromagnetic resonance curve. For all the amorphous alloys studied here the saturation magnetization in the temperature range 5 K up to about $0.3T_{c}$ can be described by the Bloch relation: $M_{s}(T)\;=\;M_{s}(0)(1-BT^{3/2}-CT^{5/2})$. From the values of $M_{s}(0)$, B and spectroscopic splitting g factor the spin wave stiffness constants were calculated.

  • PDF

Structural and Magnetic Properties of Co-Mn Ferrite Prepared by a Sol-gel Method

  • Kim, Woo Chul;Yi, Young Suk;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.5 no.4
    • /
    • pp.111-115
    • /
    • 2000
  • Ultrafine $Co_{0.9}Mn_{0.1}Fe_2O_4$ powders have been fabricated by a sol-gel method. Structural and magnetic properties of the powders were investigated by x-ray diffractometry, transmission electron microscopy (TEM), Mossbauer spectroscopy, and vibrating sample magnetometry (VSM). Co-Mn ferrite powders that were fired at and above 773 K contained only a single spinel phase and behaved ferrimagnetically. Powders fired at 673 and 723 K had a spinel structure and were mixed paramagnetic and ferrimagnetic in nature. The magnetic behavior of Co-Mn ferrite powders fired at and above 873 K showed that an increase of the firing temperature yielded a decrease in the coercivity and an increase in the saturation magnetization. The maximum saturation magnetization and coercivity of Co-Mn ferrite powders were 66.7 emu/g and 1523 Oe, respectively, Mossbauer spectra of the powder fired at 923 K were taken at various temperatures ranging from 13 to 850 K. The iron ions.at both A (tetrahedral) and B (octahedral) sites were found to be in ferric high-spin states. The Nel temperature $T_N$ was found to be 850 $\pm$ 2 K. Debye temperatures far A and B sites were found to be $\Theta_A = 757 \pm$5K and $Theta_B = 282 \pm$5 K, respectively.

  • PDF