• Title/Summary/Keyword: viaducts

Search Result 15, Processing Time 0.028 seconds

Earthquake performance of the two approach viaducts of the bosphorus suspension bridge

  • Bas, Selcuk;Apaydin, Nurdan Memisoglu;Celep, Zekai
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.387-406
    • /
    • 2016
  • The main purpose of this paper is to determine the dynamic characteristics and the structural stability of the two approach viaducts of the Bosphorus Suspension Bridge under the expected stresses that would be caused during earthquake conditions. The Ortakoy and the Beylerbeyi approach viaducts constitute the side spans of the bridge at two locations. The bridge's main span over the Bosphorus is suspended, whereas they are supported at the base at either end. For the numerical investigation of the viaducts, 3-D computational structural finite element-FE models were developed. Their natural frequencies and the corresponding mode shapes were obtained, analyzed, presented and compared. The performances of the viaducts, under earthquake conditions, were studied considering the P-Delta effects implementing the push-over (POA) and the non-linear time-history analyses (NTHA). For the NTHA, three earthquake ground motions were generated depending on the location of the bridge. Seismic performances of the viaducts were determined in accordance with the requirements of the Turkish Seismic Code for the Earthquake Design of Railways Bridges (TSC-R/2008) and those of Caltrans (CALTRANS-2001) given for Seismic Design of Steel Bridges, separately. Furthermore, the investigation was extended for evaluating the possible need for retrofitting in the future. After the analysis of the resultant data, a retrofit recommendation for the viaducts was presented.

A parametric study of optimum tall piers for railway bridge viaducts

  • Martinez-Martin, Francisco J.;Gonzalez-Vidosa, Fernando;Hospitaler, Antonio;Yepes, Victor
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.723-740
    • /
    • 2013
  • This paper presents a parametric study of reinforced concrete bridge tall piers with hollow, rectangular sections. Such piers are typically used in railway construction of prestressed concrete viaducts. Twenty one different piers have been studied with seven column heights of 40, 50, 60, 70, 80, 90 and 100 m and three types of 10-span continuous viaducts, whose main span lengths are 40, 50 and 60 m. The piers studied are intermediate columns placed in the middle of the viaducts. The total number of optimization design variables varies from 139 for piers with column height of 40 m to 307 for piers with column height of 100 m. Further, the results presented are of much value for the preliminary design of the piers of prestressed concrete viaducts of high speed railway lines.

Characteristic analysis on train-induced vibration responses of rigid-frame RC viaducts

  • Sun, Liangming;He, Xingwen;Hayashikawa, Toshiro;Xie, Weiping
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1015-1035
    • /
    • 2015
  • A three-dimensional (3D) numerical analysis for the train-bridge interaction (TBI) system is actively developed in this study in order to investigate the vibration characteristics of rigid-frame reinforced concrete (RC) viaducts in both vertical and lateral directions respectively induced by running high-speed trains. An analytical model of the TBI system is established, in which the high-speed train is described by multi-DOFs vibration system and the rigid-frame RC viaduct is modeled with 3D beam elements. The simulated track irregularities are taken as system excitations. The numerical analytical algorithm is established based on the coupled vibration equations of the TBI system and verified through the detailed comparative study between the computation and testing. The vibration responses of the viaducts such as accelerations, displacements, reaction forces of pier bottoms as well as their amplitudes with train speeds are calculated in detail for both vertical and lateral directions, respectively. The frequency characteristics are further clarified through Fourier spectral analysis and 1/3 octave band spectral analysis. This study is intended to provide not only a simulation approach and evaluation tool for the train-induced vibrations upon the rigid-frame RC viaducts, but also instructive information on the vibration mitigation of the high-speed railway.

Carbonation depth in 57 years old concrete structures

  • Medeiros-Junior, Ronaldo A.;Lima, Maryangela G.;Yazigi, Ricardo;Medeiros, Marcelo H.F.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.953-966
    • /
    • 2015
  • Carbonation depth was verified in 40 points of two 57 years old concrete viaducts. Field testing (phenolphthalein spraying) was performed on the structures. Data obtained were statistically analyzed by the Kolmogrov-Smirnov's test, one-way analysis of variance (ANOVA's test), and Fisher's method. The results revealed significant differences between maximum carbonation depths of different elements of the same concrete structure. Significant differences were also found in the carbonation of different concrete structures inserted in the same macroclimate. Microclimatic factors such as temperature and local humidity, sunshine, wind, wetting and drying cycles, among others, may have been responsible by the behavior of carbonation in concrete.

Numerical study of a new constructive sequence for movable scaffolding system (MSS) application

  • Teran, Jose Ramon Diaz de;Haach, Vladimir Guilherme;Turmo, Jose;Jorquera, Juan Jose
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.173-194
    • /
    • 2016
  • This paper consists in a study of a new contructive sequence of road viaducts with Movable Scaffolding System (MSS) using numerical tools based on finite element method (FEM). Traditional and new sequences are being used in Spain to build viaducts with MSS. The new sequence permits an easier construction of one span per week but implies some other issues related to the need of two prestressing stages per span. In order to improve the efficiency of the new sequence by reducing the number of prestressing stages per span, two solutions are suggested in this study. Results show that the best solution is to introduce the 100% of the prestressing force at the self-supporting core in order to improve the road viaduct construction with movable scaffolding system by reducing execution time without increasing economic costs.

Rail Structure Interaction Analysis for the Curved-Elevated Viaducts (곡선구간을 포함한 고가철도의 레일 구조물 상호작용 해석)

  • Cho Eu-Kyeong;Park Sung-Ryung
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.376-381
    • /
    • 2005
  • This paper presents the rail structure interaction analysis of the elevated viaducts which contains the curved alignments with smallest radius of 300 metre. The aim of this study is to check the compatibility between the track and the curved structure in order to verify the safety of the continuous welded rail track under service conditions. To perform the rail structure interaction analysis, nonlinear static rail structure interaction calculation is implemented. The bridge structures, the rails and the track behaviour are modelled according to the UIC774-3 and the Eurocode prEN1991-2 recommendations. Criteria in Eurocode prEN1991-2 are investigated to check the compatibility between the track and the structure for the rail structure interaction effects.

  • PDF

Investigation and Evaluation on Performance of Durability for Freeway Concrete Viaducts in Seoul Metropolitan Area (서울시내 위치한 콘크리트 고가차도의 내구성능 조사 및 평가)

  • Lee, Chang-Soo;Yoon, In-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.1 s.4
    • /
    • pp.143-152
    • /
    • 2002
  • The objectives of this paper were to obtain the fundamental data to analyze the causes of deterioration of 39 freeway concrete viaducts in Seoul metropolitan area. To investigate the degree of concrete deterioration, carbonation depth, soluble chloride concentration in hardened concrete and half-cell potentials of reinforcement were measured. The number of structures which carbonation depth penetrates to reinforcement was 25% of total. The model of carbonation .ate was induced to 3.92 $\sqrt{t}$, which was 5% faster than 3.727 $\sqrt{t}$ assumed 60% water-cement ratio, R=1 in that of kishitani. After measuring chloride concentration in concrete, it was concluded that about 24% of all readings on samples from concrete exceed the critical content to minimize the risk of chloride-induced corrosion. About 31% of the freeway viaducts structures had a value lower than -350mV(vs. CSE), so it could conclude that the excessive chloride concentration was the major cause of reinforcement corrosion. Among the structures which measured half-cell potentials less than -350mV, about 50% exceeds the maximum acceptable limit of chloride concentration.

Cracked Section Analysis for Partial Prestressing Design

  • Song Jong Young;Jang Seok Hun;Kang Dong Ok;Cho Ik Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.225-228
    • /
    • 2005
  • In this paper, an example of nonlinear analysis for partial prestressing design is presented. For partial prestressing design, the stress redistribution, after concrete cracking has occurred, should be accurately investigated by nonlinear analysis tools. Direct and iterative methods of nonlinear analyses were adopted for the tender design of the Incheon Bridge viaducts. Stress variations in the prestressing tendons and reinforcing bars were investigated and presented in this paper for both the in-service condition and during construction.

  • PDF

A Study of Longitudinal Forces and Displacements in a Multi-Span Bridge Equipped with a CWR Track (장대레일이 설치된 교량에서의 축방향 변위 및 축력 변화 연구)

  • Lee, Joo-Heon;Huh, Young
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.442-449
    • /
    • 1999
  • Due to temperature variations, considerable longitudinal rail forces and displacements may develop in continuous welded rail(CWR) track on long-span bridges or viaducts. Excessive relative displacements between sleepers and ballast bed may disturb the stable position of the track in the ballast which results in a lower frictional resistance. Generally, these problems are solved by installing rail expansion devices. However the application of expansion devices in high-speed tracks on existing bridges, as a means to prevent excessive longitudinal displacements and forces, is not attractive method due to comfort, safety and maintenance aspects. An alternative and very effective solution is possibly the use of so-called zero longitudinal restraint(ZLR) fastenings over some length of the track. The calculations, carried out in this respect, show a considerable reduction of track displacements, track forces, and the relative sleeper/ballast displacements. This reduction depends on the length over which these fastenings are installed. In this paper calculations of the longitudinal displacments and forces in a CWR track and substructure resulting from thermal, mechanical and kinematical loads were carried out using the FEM analysis program LUSAS

  • PDF

The Behaviors of Earthquake Monitoring System for Gyungbu High Speed Railroad on the Odaesan Earthquake (오대산지진 시 경부고속철도 지진감시시스템 거동)

  • Kim, Dae-Sang;Kim, Sung-Il;Choi, Su-Hyun;You, Won-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.537-540
    • /
    • 2008
  • This paper reviews the operation standards and manuals of earthquake monitoring system for Gyungbu high speed railroad. The domestic earthquake monitoring system detects the acceleration data at the locations of lower part of pier and deck of viaducts and bridges, not like foreign system to do the surface ground accelerations. For the purpose of evaluating the behaviors of the domestic earthquake monitoring system, measured acceleration data on the Odaesan earthquake at Iwon viaduct were analysed. The values of maximum acceleration level of the viaduct were increased from 0.0089g(EW component) of the lower part of pier to 0.014g(EW component) on the deck of the viaduct. And also the predominant periods and frequencies were analysed by the frequency domain analysis.

  • PDF