• Title/Summary/Keyword: viability decrease

Search Result 514, Processing Time 0.035 seconds

Effects of Taeyeumjoweetang against Glucose Oxidase-induced Neurotoxicity in the Cultured Mouse Cerebral Cortical Neurons (태음조위탕(太陰調胃湯)이 Glucose Oxidase에 의해 손상된 대뇌피질(大腦皮質) 신경세포(神經細胞)에 미치는 영향(影響))

  • Kim, Jong-kwan;Ryu, Do-gon;Kim, Kyung-yo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.11 no.2
    • /
    • pp.267-281
    • /
    • 1999
  • 1. Purpose : The purpose of this study was to determine the effects of Taeyeumjoweetang on the cerebral neurons injured by glucose oxidase(GO). 2. Methods : I observed cell viability in mouse cerebral neurons exposed to glucose oxidase by NR assay and MTT assay and determined lipid peroxidation in mouse cerebral neurons exposed to glucose oxidase. After administration of Taeyeumjoweetang water extracts, I observed significant changes of cell viability, lipid peroxidation in mouse cerebral neurons exposed to glucose oxidase. 3. Results : GO induced cell degeneration such as the decrease of cell viability was measured by MTT and NR assay in the cultured mouse cerebral cortical neurons. Taeyeumjoweetang was effective in the increase of total protein of neurons inhibited by GO. Taeyeumjoweetang was effective in the decrease of lipid peroxidation of neurons produced by GO.

  • PDF

Hepatitis C Virus Nonstructural 5A Protein (HCV-NS5A) Inhibits Hepatocyte Apoptosis through the NF-κb/miR-503/bcl-2 Pathway

  • Xie, Zhengyuan;Xiao, Zhihua;Wang, Fenfen
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.202-210
    • /
    • 2017
  • The nonstructural protein 5A (NS5A) encoded by the human hepatitis C virus (HCV) RNA genome is a multifunctional phosphoprotein. To analyse the influence of NS5A on apoptosis, we established an Hep-NS5A cell line (HepG2 cells that stably express NS5A) and induced apoptosis using tumour necrosis factor $(TNF)-{\alpha}$. We utilised the MTT assay to detect cell viability, real-time quantitative polymerase chain reaction and Western blot to analyse gene and protein expression, and a luciferase reporter gene experiment to investigate the targeted regulatory relationship. Chromatin immunoprecipitation was used to identify the combination of $NF-{\kappa}B$ and miR-503. We found that overexpression of NS5A inhibited $TNF-{\alpha}$-induced hepatocellular apoptosis via regulating miR-503 expression. The cell viability of the $TNF-{\alpha}$ induced Hep-mock cells was significantly less than the viability of the $TNF-{\alpha}$ induced Hep-NS5A cells, which demonstrates that NS5A inhibited $TNF-{\alpha}$-induced HepG2 cell apoptosis. Under $TNF-{\alpha}$ treatment, miR-503 expression was decreased and cell viability and B-cell lymphoma 2 (bcl-2) expression were increased in the Hep-NS5A cells. Moreover, the luciferase reporter gene experiment verified that bcl-2 was a direct target of miR-503, NS5A inhibited $TNF{\alpha}$-induced $NF-{\kappa}B$ activation and $NF-{\kappa}B$ regulated miR-503 transcription by combining with the miR-503 promoter. After the Hep-NS5A cells were transfected with miR-503 mimics, the data indicated that the mimics could reverse $TNF-{\alpha}$-induced cell apoptosis and blc-2 expression. Collectively, our findings suggest a possible molecular mechanism that may contribute to HCV treatment in which NS5A inhibits $NF-{\kappa}B$ activation to decrease miR-503 expression and increase bcl-2 expression, which leads to a decrease in hepatocellular apoptosis.

Protection of Primary Cultured Mouse Hepatocytes from Chemical Hypoxia-induced Injury by Hydrogen Sulfide (화학적 허혈에 의해 손상된 마우스 간세포에 대한 hydrogen sulfide의 간세포 보호 효과)

  • Lee, Min Young
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1342-1350
    • /
    • 2013
  • We examined the effect of hydrogen sulfide ($H_2S$) in chemical hypoxia-induced injury in mouse hepatocytes. Cell viability was significantly decreased by cobalt chloride ($CoCl_2$), a well-known hypoxia mimetic agent in a time- and dose- dependent manner. Sodium hydrosulfide (NaHS, a donor of $H_2S$) pretreatment before exposure to $CoCl_2$ significantly attenuated the $CoCl_2$-induced decrease of cell viability. $CoCl_2$ treatment resulted in an increase of intracellular ROS generation, which is inhibited by NaHS or N-acetyl-cysteine (NAC, a ROS scavenger), and p38 MAPK phosphorylation, which is also blocked by NaHS or NAC. The $CoCl_2$-induced increase of the Bax/Bcl-2 ratio was attenuated by NaHS, NAC, and SB 203580 (p38 MAPK inhibitor). The $CoCl_2$-induced decrease of cell viability was also attenuated by NaHS, NAC, and SB 203580 pretreatment. Additionally, NaHS inhibited the $CoCl_2$-induced COX-2. Similar to the effect of NaHS, NAC blocked $CoCl_2$-induced COX-2 expression. Furthermore, NS-398 (a selective COX-2 inhibitor) attenuated not only the $CoCl_2$-induced increase of the Bax/Bcl-2 ratio, it also decreased cell viability. Taken together, $H_2S$ protects primary cultured mouse hepatocytes against $CoCl_2$-induced cell injury through inhibition of the ROS-activated p38 MAPK cascade and the COX-2 pathway.

Tumour Suppressive Effects of WEE1 Gene Silencing in Breast Cancer Cells

  • Ghiasi, Naghmeh;Habibagahi, Mojtaba;Rosli, Rozita;Ghaderi, Abbas;Yusoff, Khatijah;Hosseini, Ahmad;Abdullah, Syahrilnizam;Jaberipour, Mansooreh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6605-6611
    • /
    • 2013
  • Background: WEE1 is a G2/M checkpoint regulator protein. Various studies have indicated that WEE1 could be a good target for cancer therapy. The main aim of this study was to asssess the tumor suppressive potential of WEE1 silencing in two different breast cancer cell lines, MCF7 which carries the wild-type p53 and MDA-MB468 which contains a mutant type. Materials and Methods: After WEE1 knockdown with specific shRNAs downstream effects on cell viability and cell cycle progression were determined using MTT and flow cytometry analyses, respectively. Real-time PCR and Western blotting were conducted to assess the effect of WEE1 inhibition on the expression of apoptotic (p53) and anti-apoptotic (Bcl2) factors and also a growth marker (VEGF). Results: The results showed that WEE1 inhibition could cause a significant decrease in the viability of both MCF7 and MDA-MB-468 breast cancer cell lines by more than 50%. Interestingly, DNA content assays showed a significant increase in apoptotic cells following WEE1 silencing. WEE1 inhibition also induced upregulation of the apoptotic marker, p53, in breast cancer cells. A significant decrease in the expression of VEGF and Bcl-2 was observed following WEE1 inhibition in both cell lines. Conclusions: In concordance with previous studies, our data showed that WEE1 inhibition could induce G2 arrest abrogation and consequent cell death in breast cancer cells. Moreover, in this study, the observed interactions between the pro- and anti-apoptotic proteins and decrease in the angiogenesis marker expression confirm the susceptibility to apoptosis and validate the tumor suppressive effect of WEE1 inhibition in breast cancer cells. Interestingly, the levels of the sensitivity to WEE1 silencing in breast cancer cells, MCF7 and MDA-MB468, seem to be in concordance with the level of p53 expression.

Melatonin Attenuates Nitric Oxide Induced Oxidative Stress on Viability and Gene Expression in Bovine Oviduct Epithelial Cells, and Subsequently Increases Development of Bovine IVM/IVF Embryos

  • Kim, J.T.;Jang, H.Y.;Park, C.K.;Cheong, H.T.;Park, I.C.;Yang, B.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.190-197
    • /
    • 2011
  • The objective of the present study was to elucidate the fundamental mechanism of bovine oviduct epithelial cell (BOEC) co-culture on developmental capacity of bovine IVM/IVF embryos and to determine whether or not melatonin acts as an antioxidant in BOEC culture and subsequent embryo development. These studies examined the effects of melatonin against NO-induced oxidative stress on cell viability, lipid peroxidation (LPO) and the expression of antioxidant genes (CuZnSOD, MnSOD and Catalase) or apoptosis genes (Bcl-2, Caspase-3 and Bax) during BOECs culture. We also evaluated the developmental rates of bovine IVM/IVF embryos with BOEC co-culture, which were pre-treated with melatonin ($1,000\;{\mu}M$) in the presence or absence of sodium nitroprusside (SNP, $1,000\;{\mu}M$) for 24 h. Cell viability in BOECs treated with SNP (50-$2,000\;{\mu}M$) decreased while melatonin addition (1-$1,000\;{\mu}M$) increased viability in a dose-dependent manner. Cell viability in melatonin plus SNP ($1,000\;{\mu}M$) gradually recovered according to increasing melatonin addition (1-$1,000\;{\mu}M$). The LPO products were measured by thiobarbituric acid (TBA) reaction for malondialdehyde (MDA). Addition of melatonin in BOEC culture indicated a dose-dependent decrease of MDA, and in the SNP group among BOECs treated with SNP or melatonin plus SNP groups MDA was significantly increased compared with SNP plus melatonin groups (p<0.05). In expression of apoptosis or antioxidant genes detected by RT-PCR, Bcl-2 and antioxidant genes were detected in melatonin or melatonin plus SNP groups, while Caspase-3 and Bax genes were only found in the SNP group. When bovine IVM/IVF embryos were cultured for 6-7 days under the BOEC co-culture system pre-treated with melatonin in the presence or absence of SNP, the highest developmental ability to blastocysts was obtained in the $1,000\;{\mu}M$ melatonin group. These results suggest that melatonin has an anti-oxidative effect against NO-induced oxidative stress on cell viability of BOECs and on the developmental competence of bovine IVM/IVF embryo co-culture with BOEC.

Effects of Fructus Schisandrae Water Extract on Cultured Mouse Myocardial Cells Induced by Xanthine Oxidase/Hypoxanthine (오미자 추출물이 산소지유기에 의하여 손상된 생쥐의 배양 심근세포에 미치는 영향)

  • 주은정
    • Journal of Nutrition and Health
    • /
    • v.33 no.7
    • /
    • pp.739-744
    • /
    • 2000
  • The purpose of this study was to elucidate protective effect of Fructus Schsandrae(FS) water extract against xanthine oxidase/hypoxanthine(XO/HX)-induced cardiotoxicity in myocardial cells this experiment was performed. Cardiotoxicity of XO/HX was examined by MTT(MTT [3-(4,5-dimethylthiazol-2-yl)-2.5,-diphenyl tetrazolium bromide) assay. XO/HX induced the decrease of cell viability. Also XO/HX induced the increase of LDH activity and the decrease of beating rate on cultured myocardial cells in a dose-dependent manner. To investigate cardioprotective effect of FS water extract cultures were preincubated with FS water extract for 3 hours. Cultures were then exposed to XO/HX for 72 hours. FS water extract have an efficacy in decreaasing LDH activity and increasing heart beating rate on cultured myocardial cells damaged by XO/HX. From the results it is suggested that XO/HX may show toxic effect in cultured myocardial cells derived from neonatal mouse and FS water extract is effective in the prevention of XO/HX-induced cardiotoxicity.

  • PDF

Effect of Palm or Coconut Solid Lipid Nanoparticles (SLNs) on Growth of Lactobacillus plantarum in Milk

  • Jo, Yeon-Ji;Choi, Mi-Jung;Kwon, Yun-Joong
    • Food Science of Animal Resources
    • /
    • v.35 no.2
    • /
    • pp.197-204
    • /
    • 2015
  • This study was performed to investigate the effect of palm or coconut solid lipid nanoparticles (PO-SLNs or CO-SLNs) on growth of Lactobacillus plantarum (L. plantarum) in milk during storage period. The PO or CO (0.1% or 1.0%) was dispersed both in distilled water (DW) and ultra high temperature milk (UHTM), and subsequently emulsified with Tween® 80 by ultrasonication (30% power, 2 min). Increase in particle size and encapsulation efficiency (EE%) in DW was observed with an increase in oil concentration, whereas a decrease in ζ-potential of SLNs was noted with an increment in oil concentration. Moreover, the CO-SLNs exhibited relatively smaller particle size and higher EE% than PO-SLNs. The CO-SLNs were found to be more stable than PO-SLNs. Higher lipid oxidation of PO or CO-SLNs in UHTM was observed during the storage test, when compared to PO or CO-SLNs in DW. However, there was no remarkable difference in lipid oxidation during storage period (p>0.05). In the growth test, the viability of L. plantarum in control (without PO or CO-SLNs in DW) exhibited a dramatic decrease with increasing storage period. In addition, viability of L. plantarum of PO or COSLNs in UHTM was higher than that of SLNs in DW. Based on the present study, production of SLNs containing PO or CO in UHTM is proposed, which can be used in lactobacilli fortified beverages in food industry.

The Induction Effect of Apoptosis in A549 Human Lung Cancer Cells by the Trichosanthes Kirilowii Pharmacopuncture Solution (천화분 약침액의 A549 폐암 세포주에서 apoptosis 유발효과)

  • Choi, Tae-Yeon;Lee, Sung-Won;Ryu, Yeon-Hee;Ban, Hyo-Jeong;Seo, Geun-Young;Kim, Jae-Hyo;Ahn, Seong-Hun;Sohn, In-Chul
    • Korean Journal of Acupuncture
    • /
    • v.27 no.4
    • /
    • pp.15-23
    • /
    • 2010
  • Objectives : In order to confirm the anti-cancer effect of Trichosanthes kirilowii pharmacopuncture fluid, this study was proceeded. Methods : A549 lung cancer cells were cultured to be treated by Trichosanthes kirilowii pharmacopuncture fluid as dose dependent manner for 72 hours. And then the cell viability, nucleus fragmentaion, p21 and p53 protein expression, Bcl-2 and Bax protein expression, procaspase-3 PARP protein expression. Results : 1. Trichosanthes kirilowii pharmacopuncture fluid decrease A549 cell viability as dose dependent manner. 2. Trichosanthes kirilowii pharmacopuncture fluid induced the nucleus fragmentation in A549 lung cancer cells as dose dependent manner. 3. Trichosanthes kirilowii pharmacopuncture fluid increase the p21 and p53 protein expression. 4. Trichosanthes kirilowii pharmacopuncture fluid decrease the Bcl-2 protein expression but cannot affect the Bax protein expression. 5. Trichosanthes kirilowii pharmacopuncture fluid increase the activation of caspase-3 and PARP protein. Conclusions : As the above results, it was conclused the Trichosanthes kirilowii pharmacopuncture fluid had the anti-cancer effects to induce apoptosis.

Effects of Sintongchukeo-tang on the Cultured Spinal Sensory Neurons Injured by Hydrogen Peroxide (신통축어탕(身痛逐瘀湯)이 Hydrogen Peroxide에 의해 손상(損傷)된 배양(培養) 척수감각신경세포(脊髓感覺神經細胞)에 미치는 영향(影響))

  • Lee, Kye-Seung;Na, Young-Hoon;Cha, Yong-Suk;Heo, Yun;Kim, Do-Hwan;Han, Sang-Hyok;Park, Byong-Min;Lee, In;Moon, Byung-Soon
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.557-565
    • /
    • 2001
  • Objectives : This study was carried out to examine toxic effect of Sintongchukeo-tang on cultured mouse spinal sensory neurons inhibited by neurotoxicity induced by hydrogen peroxide. Methods : MTT assay, NR assay, LDH and neurofilament assay were performed after spinal sensory neurons were preincubater with various concentrations of Sintongchukeo-tang water extract before treatment of cells with hydrogen peroxide. Results : Hydrogen peroxide induced ceil degeneration such as the decrease of cell viability was measured by MTT and NR assay in the cultured mouse spinal sensory neurons. Sintongchukeo-tang water extract was effective in the decrease of LDH activities of neurons produced by hydrogen peroxide. Sintongchukeo-tang water extract was effective in the increase of amount of neurofilaments damaged by hydrogen peroxide. Conclusions : From the above results, it is suggested that hydrogen peroxide induces the inhibition of cell viability in cultured mouse spinal sensory neurons and Sintongchukeo-tang water extract was effective in cultured neurons damaged by hydrogen peroxide.

  • PDF

Mechanism Underlying Shikonin-induced Apoptosis and Cell Cycle Arrest on SCC25 Human Tongue Squamous Cell Carcinoma Cell Line

  • Oh, Sang-Hun;Park, Sung-Jin;Yu, Su-Bin;Kim, Yong-Ho;Kim, In-Ryoung;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.40 no.1
    • /
    • pp.51-61
    • /
    • 2015
  • Shikonin, a major ingredient in the traditional Chinese herb Lithospermumerythrorhizon, exhibits multiple biological functions including antimicrobial, anti-inflammatory, and antitumor effects. It has recently been reported that shikonin displays antitumor properties in many cancers. This study was aimed to investigate whether shikonin could inhibit oral squamous carcinoma cell (OSCC) growth via mechanisms of apoptosis and cell cycle arrest. The effects of shikonin on the viability and growth of OSCC cell line, SCC25 cells were assessed by MTT assay and clonogenic assays, respectively. Hoechst staining and DNA electrophoresis indicated that the shikonin-treated SCC25 cells were undergoing apoptosis. Western blotting, immunocytochemistry, confocal microscopy, flow cytometry, MMP activity, and proteasome activity also supported the finding that shikonin induces apoptosis. Shikonin treatment of SCC25 cells resulted in a time- and dose-dependent decrease in cell viability, inhibition of cell growth, and increase in apoptotic cell death. The treated SCC25 cells showed several lines of apoptotic manifestation as follows: nuclear condensation; DNA fragmentation; reduced MMP and proteasome activity; decrease in DNA contents; release of cytochrome c into cytosol; translocation of AIF and DFF40 (CAD) onto the nuclei; a significant shift in Bax/Bcl-2 ratio; and activation of caspase-9, -7, -6, and -3, as well as PARP, lamin A/C, and DFF45 (ICAD). Shikonin treatment also resulted in down-regulation of the G1 cell cycle-related proteins and up-regulation of $p27^{KIP1}$. Taken together, our present findings demonstrate that shikonin strongly inhibits cell proliferation by modulating the expression of the G1 cell cycle-related proteins, and that it induces apoptosis via the proteasome, mitochondria, and caspase cascades in SCC25 cells.