DOI QR코드

DOI QR Code

Mechanism Underlying Shikonin-induced Apoptosis and Cell Cycle Arrest on SCC25 Human Tongue Squamous Cell Carcinoma Cell Line

  • Oh, Sang-Hun (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Park, Sung-Jin (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Yu, Su-Bin (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Kim, Yong-Ho (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Kim, In-Ryoung (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Park, Bong-Soo (Department of Oral Anatomy, School of Dentistry, Pusan National University)
  • Received : 2015.03.02
  • Accepted : 2015.03.17
  • Published : 2015.03.31

Abstract

Shikonin, a major ingredient in the traditional Chinese herb Lithospermumerythrorhizon, exhibits multiple biological functions including antimicrobial, anti-inflammatory, and antitumor effects. It has recently been reported that shikonin displays antitumor properties in many cancers. This study was aimed to investigate whether shikonin could inhibit oral squamous carcinoma cell (OSCC) growth via mechanisms of apoptosis and cell cycle arrest. The effects of shikonin on the viability and growth of OSCC cell line, SCC25 cells were assessed by MTT assay and clonogenic assays, respectively. Hoechst staining and DNA electrophoresis indicated that the shikonin-treated SCC25 cells were undergoing apoptosis. Western blotting, immunocytochemistry, confocal microscopy, flow cytometry, MMP activity, and proteasome activity also supported the finding that shikonin induces apoptosis. Shikonin treatment of SCC25 cells resulted in a time- and dose-dependent decrease in cell viability, inhibition of cell growth, and increase in apoptotic cell death. The treated SCC25 cells showed several lines of apoptotic manifestation as follows: nuclear condensation; DNA fragmentation; reduced MMP and proteasome activity; decrease in DNA contents; release of cytochrome c into cytosol; translocation of AIF and DFF40 (CAD) onto the nuclei; a significant shift in Bax/Bcl-2 ratio; and activation of caspase-9, -7, -6, and -3, as well as PARP, lamin A/C, and DFF45 (ICAD). Shikonin treatment also resulted in down-regulation of the G1 cell cycle-related proteins and up-regulation of $p27^{KIP1}$. Taken together, our present findings demonstrate that shikonin strongly inhibits cell proliferation by modulating the expression of the G1 cell cycle-related proteins, and that it induces apoptosis via the proteasome, mitochondria, and caspase cascades in SCC25 cells.

Keywords

References

  1. Andujar I, Recio MC, Giner RM, Rios JL. Traditional chinese medicine remedy to jury: the pharmacological basis for the use of shikonin as an anticancer therapy. Curr Med Chem. 2013;20:2892-2898. doi: http://dx.doi.org/10.2174/09298673113209990008.
  2. Andujar I, Rios JL, Giner RM, Recio MC. Pharmacological Properties of Shikonin - A Review of Literature since 2002. Planta Med. 2013. doi: 10.1055/s-0033-1350934.
  3. Zhang FL, Wang P, Liu YH, Liu LB, Liu XB, Li Z, Xue YX. Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells. PLoS One. 2013;8:e81815. doi: 10.1371/journal.pone.0081815.
  4. Piao JL, Cui ZG, Furusawa Y, Ahmed K, Rehman MU, Tabuchi Y, Kadowaki M, Kondo T. The molecular mechanisms and gene expression profiling for shikonininduced apoptotic and necroptotic cell death in U937 cells. Chem Biol Interact. 2013;205:119-127. doi: http://dx.doi.org/10.1016/j.cbi.2013.06.011.
  5. Rajasekar S, Park da J, Park C, Park S, Park YH, Kim ST, Choi YH, Choi YW. In vitro and in vivo anticancer effects of Lithospermum erythrorhizon extract on B16F10 murine melanoma. J Ethnopharmacol. 2012;144:335-345. doi: 10.1016/j.jep.2012.09.017.
  6. Wang HB, Ma XQ. [Mechanisms of (2-methyl-n-butyl) shikonin induced apoptosis of gastric cancer SGC-7901 cells]. Yao Xue Xue Bao. 2012;47:816-821.
  7. Yeh CC, Kuo HM, Li TM, Lin JP, Yu FS, Lu HF, Chung JG, Yang JS. Shikonin-induced apoptosis involves caspase-3 activity in a human bladder cancer cell line (T24). In Vivo. 2007;21:1011-1019.
  8. Zhang Z, Zhang C, Ding Y, Zhao Q, Yang L, Ling J, Liu L, Ji H, Zhang Y. The activation of p38 and JNK by ROS, contribute to OLO-2-mediated intrinsic apoptosis in human hepatocellular carcinoma cells. Food Chem Toxicol. 2014; 63:38-47. doi: http://dx.doi.org/10.1016/j.fct.2013.10.043.
  9. Carson DA, Ribeiro JM. Apoptosis and disease. Lancet 1993;341:1251-1254. https://doi.org/10.1016/0140-6736(93)91154-E
  10. Ohta K, Yamashita N. Apoptosis of eosinophils and lymphocytes in allergic inflammation. J Allergy Clin Immunol. 1999;104:14-21. https://doi.org/10.1016/S0091-6749(99)70107-7
  11. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495-516. doi: 10.1080/01926230701320337.
  12. Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006;25: 4798-4811. doi: 10.1038/sj.onc.1209608.
  13. Chang KP, Wu CC, Fang KH, Tsai CY, Chang YL, Liu SC, Kao HK. Serum levels of chemokine (C-X-C motif) ligand 9 (CXCL9) are associated with tumor progression and treatment outcome in patients with oral cavity squamous cell carcinoma. Oral Oncol. 2013;49:802-807. doi: http:// dx.doi.org/ 10.1016/j.oraloncology.2013.05.006.
  14. Chen SF, Nieh S, Jao SW, Liu CL, Wu CH, Chang YC, Yang CY, Lin YS. Quercetin suppresses drug-resistant spheres via the p38 MAPK-Hsp27 apoptotic pathway in oral cancer cells. PLoS One 2012;7:e49275. doi: 10.1371/journal.pone.0049275.
  15. Quan J, Elhousiny M, Johnson NW, Gao J. Transforming growth factor-beta1 treatment of oral cancer induces epithelial-mesenchymal transition and promotes bone invasion via enhanced activity of osteoclasts. Clin Exp Metastasis 2013;30:659-670. doi: 10.1007/s10585-013-9570-0.
  16. Bell RB, Kademani D, Homer L, Dierks EJ, Potter BE. Tongue cancer: Is there a difference in survival compared with other subsites in the oral cavity? J Oral Maxillofac Surg. 2007;65:229-236. doi: 10.1016/j.joms.2005.11.094.
  17. Lo WL, Kao SY, Chi LY, Wong YK, Chang RC. Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: factors affecting survival. J Oral Maxillofac Surg. 2003;61:751-758. doi: 10.1016/S0278-2391(03)00149-6.
  18. Shintani S, Li C, Mihara M, Klosek SK, Terakado N, Hino S, Hamakawa H. Anti-tumor effect of radiation response by combined treatment with angiogenesis inhibitor, TNP-470, in oral squamous cell carcinoma. Oral Oncol. 2006;42:66-72. doi: 10.1016/j.oraloncology.2005.06.010.
  19. Shen J, Huang C, Jiang L, Gao F, Wang Z, Zhang Y, Bai J, Zhou H, Chen Q. Enhancement of cisplatin induced apoptosis by suberoylanilide hydroxamic acid in human oral squamous cell carcinoma cell lines. Biochem Pharmacol. 2007;73: 1901-1909. doi: 10.1016/j.bcp.2007.03.009.
  20. Lachumy SJ, Oon CE, Deivanai S, Saravanan D, Vijayarathna S, Choong YS, Yeng C, Latha LY, Sasidharan S. Herbal Remedies for Combating Irradiation: a Green Antiirradiation Approach. Asian Pac J Cancer Prev. 2013;14: 5553-5565. doi: http://dx.doi.org/10.7314/APJCP.2013.14.10.5553.
  21. Yang Y, Zhang Z, Li S, Ye X, Li X, He K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia 2013;92C:133-147. doi: http://dx.doi.org/10.1016/j.fitote.2013.10.010.
  22. Kim HM, Lee EH, Hong SH, Song HJ, Shin MK, Kim SH, Shin TY. Effect of Syzygium aromaticum extract on immediate hypersensitivity in rats. J Ethnopharmacol. 1998;60:125-131. https://doi.org/10.1016/S0378-8741(97)00143-8
  23. Kim HM, Yi JM, Lim KS. Magnoliae flos inhibits mast cell-dependent immediate-type allergic reactions. Pharmacol Res. 1999;39:107-111. https://doi.org/10.1006/phrs.1998.0414
  24. Park HI, Jeong MH, Lim YJ, Park BS, Kim GC, Lee YM, Kim HM, Yoo KS, Yoo YH. Szygium aromaticum (L.) Merr. Et Perry (Myrtaceae) flower bud induces apoptosis of p815 mastocytoma cell line. Life Sci. 2001;69:553-566. https://doi.org/10.1016/S0024-3205(01)01140-7
  25. Na HJ, Jeong HJ, Bae H, Kim YB, Park ST, Yun YG, Kim HM. Tongkyutang inhibits mast cell-dependent allergic reactions and inflammatory cytokines secretion. Clin Chim Acta. 2002;319:35-41. https://doi.org/10.1016/S0009-8981(02)00011-6
  26. Kim JM, Bae HR, Park BS, Lee JM, Ahn HB, Rho JH, Yoo KW, Park WC, Rho SH, Yoon HS, Yoo YH. Early mitochondrial hyperpolarization and intracellular alkalinization in lactacystin-induced apoptosis of retinal pigment epithelial cells. J Pharmacol Exp Ther. 2003;305: 474-481. doi: 10.1124/jpet.102.047811.
  27. Chen YY, Wang Z. [Advance in study on pharmacological mechanisms of Qingkailing injection in intervention of ischemic cerebral injury]. Zhongguo Zhong Yao Za Zhi. 2012;37:3198-3202.
  28. Gu Y, Scheuer C, Feng D, Menger MD, Laschke MW. Inhibition of angiogenesis: a novel antitumor mechanism of the herbal compound arctigenin. Anticancer Drugs 2013;24:781-791. doi: 10.1097/CAD.0b013e328362fb84.
  29. Liu C, Yin L, Chen J. The apoptotic effect of shikonin on human papillary thyroid carcinoma cells through mitochondrial pathway. Tumour Biol. 2013. doi: 10.1007/s13277-013-1238-5.
  30. Wang L, Gai P, Xu R, Zheng Y, Lv S, Li Y, Liu S. Shikonin protects chondrocytes from interleukin-1beta-induced apoptosis by regulating PI3K/Akt signaling pathway. Int J Clin Exp Pathol. 2015;8:298-308.
  31. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251-306. https://doi.org/10.1016/S0074-7696(08)62312-8
  32. Williams GT. Programmed cell death: apoptosis and oncogenesis. Cell 1991;65:1097-1098. https://doi.org/10.1016/0092-8674(91)90002-G
  33. Kroemer G. [Mitochondrial control of apoptosis]. Bull Acad Natl Med. 2001;185:1135-1142.
  34. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309-1312. https://doi.org/10.1126/science.281.5381.1309
  35. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999;397: 441-446. https://doi.org/10.1038/17135
  36. Gogvadze V, Orrenius S. Mitochondrial regulation of apoptotic cell death. Chem Biol Interact. 2006;163:4-14. doi:10.1016/j.cbi.2006.04.010.
  37. Orrenius S. Mitochondrial regulation of apoptotic cell death. Toxicol Lett. 2004;149:19-23. doi: 10.1016/j.toxlet.2003.12.017.
  38. Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome crelease in isolated mitochondria. Proc Natl Acad Sci USA. 1998;95:14681-14686. https://doi.org/10.1073/pnas.95.25.14681
  39. Zou H, Li Y, Liu X, Wang X. An APAF-1.cytochrome cmultimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem. 1999;274:11549-11556. https://doi.org/10.1074/jbc.274.17.11549
  40. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J, Kroemer G. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J. 2000;14:729-739. https://doi.org/10.1096/fasebj.14.5.729
  41. Vaux DL, Silke J. IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol. 2005;6:287-297. doi: 10.1038/nrm1621.
  42. Morizane Y, Honda R, Fukami K, Yasuda H. X-linked inhibitor of apoptosis functions as ubiquitin ligase toward mature caspase-9 and cytosolic Smac/DIABLO. J Biochem. 2005;137:125-132. doi: 10.1093/jb/mvi029.
  43. Neutzner A, Li S, Xu S, Karbowski M. The ubiquitin/proteasome system-dependent control of mitochondrial steps in apoptosis. Semin Cell Dev Biol. 2012;23:499-508. doi: http://dx.doi.org/10.1016/j.semcdb.2012.03.019.
  44. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5:a008656. doi: 10.1101/cshperspect.a008656.
  45. Cheng AC, Jian CB, Huang YT, Lai CS, Hsu PC, Pan MH. Induction of apoptosis by Uncaria tomentosa through reactive oxygen species production, cytochrome c release, and caspases activation in human leukemia cells. Food Chem Toxicol. 2007;45:2206-2218. doi: 10.1016/j.fct.2007.05.016.
  46. Pavletich NP. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol. 1999;287:821-828. https://doi.org/10.1006/jmbi.1999.2640
  47. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J. Cloning of p27Kip1, a cyclindependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 1994;78:59-66. https://doi.org/10.1016/0092-8674(94)90572-X
  48. Coats S, Flanagan WM, Nourse J, Roberts JM. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 1996;272:877-880. https://doi.org/10.1126/science.272.5263.877
  49. Teyssier F, Bay JO, Dionet C, Verrelle P. [Cell cycle regulation after exposure to ionizing radiation]. Bull Cancer 1999;86:345-357.
  50. Colman MS, Afshari CA, Barrett JC. Regulation of p53 stability and activity in response to genotoxic stress. Mutat Res. 2000;462:179-188. https://doi.org/10.1016/S1383-5742(00)00035-1