• Title/Summary/Keyword: viability decrease

Search Result 514, Processing Time 0.029 seconds

Antioxidant Effect and Liver Protection Effect of Spatholobi Caulis Water Extract (계혈등 물추출물의 항산화 및 간보호효과)

  • Lee, Jae-Jun;Choi, Hong-Sik;Kim, Seung-Mo
    • The Korea Journal of Herbology
    • /
    • v.26 no.3
    • /
    • pp.47-56
    • /
    • 2011
  • Objectives : This study investigated whether the water extract of Spatholobi Caulis (SCE) has the ability to protect hepatocyte against oxidative stress induced by tert-butylhydroperoxide (tBHP) in vitro and $CCl_4$ in vivo. Methods : In vitro, HepG2 cells pre-treated with Spatholobi Caulis water extract (1, 3, 10, $30{\mu}g$/ml) for 12h and further incubated with tBHP ($100{\mu}M$) for the next 12h. Cell viability was assessed by MTT assay. In vivo, rats were orally administrated with the aqueous extract of Spatholobi Caulis (SCE; 50, 100 mg/kg) for 4 days and then, injected with $CCl_4$ 1 mg/kg body weight to induce acute liver damage. Results : Treatment with SCE inhibited cell death induced by tBHP, as evidenced by alterations in the levels of the proteins associated with apoptosis:SCE prevented a decrease in $Bcl_2$, and cleavage of poly(ADP-ribose)polymerase and pro-caspase-3. Moreover, SCE inhibited the ability of tBHP to generate $H_2O_2$ production, thereby restoring GSH content. Moreover, SCE treatments in rats effectively decreased liver injuries induced by a single dose of $CCl_4$, as evidenced by decreases in hepatic degeneration and inflammation as well as plasma alanine aminotransferase and lactate dehydrogenase activities. Consistently, treatments of SCE also protected liver in rats stimulated by $CCl_4$, as indicated by restoration GSH and prevention of MDA in the liver. Conclusions : SCE has the ability 1) to protect hepatocyte against oxidative stress induced by tBHP and 2) to prevent $CCl_4$-inducible acute liver toxicity. Present findings may be informative not only in elucidating the pharmacological mechanism of Spatholobi Caulis, but in determining its potential application for oxidative cellular damage in the liver.

Effect of CST on atopic dermatitis related inflammatory cytokines (청기소독탕(淸肌消毒湯)이 아토피피부염 염증 관련 인자에 미치는 영향)

  • Kim, Hye-Rim;Gim, Seon-Bin;Yun, Mi-Young;Lee, Ki-Moo;Kim, Dong-Hee
    • Journal of Haehwa Medicine
    • /
    • v.20 no.2
    • /
    • pp.41-52
    • /
    • 2012
  • In vitro tests were performed using CST to investigate its role on oxidative damages and inflammatory cytokines. 90% or higher cell viability was observed in CST treated groups from 25 to 200 ${\mu}g/m{\ell}$ using Raw 264.7 cells. CST showed dose-dependent DPPH scavenging activity, with 91.3% and 92.2% scavenging activities at 400 and 800 ${\mu}g/m{\ell}$ concentrations, respectively. CST showed dose-dependent suppression activity of ROS production, especially at 200 ${\mu}g/m{\ell}$ of 41.3%. CST decreased NO production activity, with significant decrease of 16.2% and 33.5% at 100 and 200 ${\mu}g/m{\ell}$ concentrations, respectively. IL-$1{\beta}$, IL-6, MCP-1 production rate were significantly decreased by 30.0%, 27.2%, 22.1% when Raw 264.7 cells were treated with LPS and with CST of 200 ${\mu}g/m{\ell}$. Also, TNF-${\alpha}$ production rate was decreased by 28.6%. The results above indicated therapeutic effect of CST on the AD through anti-oxidative and immune modulatory effect. Various blending of drug substances with CST should be clinically tested.

Effect of CHT in anti-oxidative and anti-inflammatory related factors (청화탕(淸華湯)의 항산화 및 항염증 효능)

  • Kim, Jin-Woo;Gim, Seon-Bin;Oh, Jeong-Min;Yun, Mi-Young;Lee, Ki-Moo;Kim, Dong-Hee
    • Journal of Haehwa Medicine
    • /
    • v.20 no.2
    • /
    • pp.29-39
    • /
    • 2012
  • To investigate the clinical aspects of CHT in atopic dermatitis (AD) treatments, the effect of CHT in anti-oxidative and anti-inflammatory cytokines were tested. 100% or higher cell viability was observed in all tested groups from 25 to 200 ${\mu}g/m{\ell}$ using Raw 264.7 cells. CHT showed dose-dependent DPPH scavenging activity, with more than 90% scavenging activities at 800 ${\mu}g/m{\ell}$ concentrations. CHT showed dose-dependent suppression activity of ROS production, especially at 200 ${\mu}g/m{\ell}$ of 37.5%. CHT decreased NO production activity, with significant decrease of 33.2% at 200 ${\mu}g/m{\ell}$. IL-6, MCP-1, TNF-${\alpha}$ production rate were decreased by approximately 25% when Raw 264.7 cells were treated with LPS and with CHT of 200 ${\mu}g/m{\ell}$. Also, IL-$1{\beta}$ production rate was decreased by 25% at 100 ${\mu}g/m{\ell}$. The results above indicate that CHT significantly reduces the effect of oxidative and inflammatory cytokines. The use of CHT in dermatitis can be widely suggested.

Comparison of Viability in Basidiomycetes After Low Temperature Storage According to Storage Period (저온 보존 기간에 따른 담자균류의 생존율 비교)

  • Ryu, Sung-Ryul;Ka, Kang-Hyeon;Lee, Bong-Hun;Park, Hyun;Bak, Won-Chull
    • The Korean Journal of Mycology
    • /
    • v.39 no.2
    • /
    • pp.141-144
    • /
    • 2011
  • Short-preservation of basidiomycetes is generally being conducted in slant tubes containing solid medium based on agar. In this study, we investigated the vitality of 28 species and 76 strains preserved on potato dextrose agar (PDA) at $4^{\circ}C$ for 2~7 years. The survival rates of the fungi were 82%, 86%, 94%, 96%, 94%, and 94% for seven, six, five, four, three, and two years old preservation, respectively. The volume of medium in Lentinula edodes showed decrease after 2 years preserved. The pH of preserved medium was 5.42 in 2007 (two years old), but it became nearly neutral as increasing preservation term.

The Mechanism of t-Butylhydroperoxide-Induced Apoptosis in IMR-32 Human Neuroblastoma Cells

  • Kim, Jung-Ae;Lee, Yong-Soo;Huh, Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.19-27
    • /
    • 1999
  • Apoptosis has been implicated in the pathophysiological mechanisms of various neurodegenerative diseases. In a variety of cell types, oxidative stress has been demonstrated to play an important role in the apoptotic cell death. However, the exact mechanism of oxidative stress-induced apoptosis in neuronal cells is not known. In this study, we induced oxidative stress in IMR-32 human neuroblastoma cells with tert- butylhydroperoxide (TBHP), which was confirmed by significantly reduced glutathione content and glutathione reductase activity, and increased glutathione peroxidase activity. TBHP induced decrease in cell viability and increase in DNA fragmentation, a hallmark of apoptosis, in a dose-dependent manner. TBHP also induced a sustained increase in intracellular $Ca^{2+}$ concentration, which was completely prevented either by EGTA, an extracellular $Ca^{2+}$ chelator or by flufenamic acid (FA), a non-selective cation channel (NSCC) blocker. These results indicate that the TBHP-induced intracellular $Ca^{2+}$ increase may be due to $Ca^{2+}$ influx through the activation of NSCCs. In addition, treatment with either an intracellular $Ca^{2+}$ chelator (BAPTA/AM) or FA significantly suppressed the TBHP-induced apoptosis. Moreover, TBHP increased the expression of p53 gene but decreased c-myc gene expression. Taken together, these results suggest that the oxidative stress-induced apoptosis in neuronal cells may be mediated through the activation of intracellular $Ca^{2+}$ signals and altered expression of p53 and c-myc.

  • PDF

Protein Kinase C-mediated Neuroprotective Action of (-)-epigallocatechin-3-gallate against $A{\beta}_{1-42}$-induced Apoptotic Cell Death in SH-SY5Y Neuroblastoma Cells

  • Jang, Su-Jeong;You, Kyoung-Wan;Kim, Song-Hee;Park, Sung-Jun;Jeong, Han-Seong;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.163-169
    • /
    • 2007
  • The neurotoxicity of amyloid $\beta(A\beta)$ is associated with an increased production of reactive oxygen species and apoptosis, and it has been implicated in the development of Alzheimer's disease. While(-)-epigallocatechin-3-gallate(EGCG) suppresses $A\beta$-induced apoptosis, the mechanisms underlying this process have yet to be completely clarified. This study was designed to investigate whether EGCG plays a neuroprotective role by activating cell survival system such as protein kinase C(PKC), extracellular-signal-related kinase(ERK), c-Jun N-terminal kinase(JNK), and anti-apoptotic and pro-apoptotic genes in SH-SY5Y human neuroblastoma cells. One ${\mu}M\;A{\beta}_{1-42}$ decreased cell viability, which was correlated with increased DNA fragmentation evidenced by DAPI staining. Pre-treatment of SH-SY5Y neuroblastoma cells with EGCG($1{\mu}M$) significantly attenuated $A{\beta}_{1-42}$-induced cytotoxicity. Potential cell signaling candidates involved in this neuroprotective effects were further examined. EGCG restored the reduced PKC, ERK, and JNK activities caused by $A{\beta}_{1-42}$ toxicity. In addition, gene expression analysis revealed that EGCG prevented both the $A{\beta}_{1-42}$-induced expression of a pro-apoptotic gene mRNA, Bad and Bax, and the decrease of an anti-apoptotic gene mRNA, Bcl-2 and Bcl-xl. These results suggest that the neuroprotective mechanism of EGCG against $A{\beta}_{1-42}$-induced apoptotic cell death includes stimulation of PKC, ERK, and JNK, and modulation of cell survival and death genes.

Apoptotic Effects of A Cisplatin and Eugenol Co-treatment of G361 Human Melanoma Cells

  • Park, Jun-Young;Jo, Jae-Beom;Kim, In-Ryoung;Kim, Gyoo-Cheon;Kwak, Hyun-Ho;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.36 no.3
    • /
    • pp.155-162
    • /
    • 2011
  • Eugenol (4-allyl-2-methoxyphenol) is a naturally occurring phenolic compound that is widely used in dentistry as a component of zinc oxide eugenol cement that is commonly applied to the mouth environment. Cisplatin is one of the most potent known anticancer agents and shows significant clinical activity against a variety of solid tumors. This study was undertaken to investigate the synergistic apoptotic effects of co-treatments with eugenol and cisplatin on human melanoma (G361) cells. To investigate whether this co-treatment efficiently reduces the viability of G361 cells compared with each single treatment, an MTT assay was conducted. The induction and augmentation of apoptosis were confirmed by DNA electrophoresis, Hoechst staining and an analysis of DNA hypoploidy. Western blot analysis and immunofluorescent staining were also performed to evaluate the expression levels and the translocation of apoptosis-related proteins following this co-treatment. Furthermore, proteasome activity and mitochondrial membrane potential (MMP) changes were also assayed. The results indicated that a co-treatment with eugenol and cisplatin induced multiple pathways and processes associated with an apoptotic response in G361 cells including nuclear condensation, DNA fragmentation, a reduction in MMP and proteasome activity, the increase and decrease of Bax and Bcl-2, a decreased DNA content, the release of cytochrome c into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, and the activation of caspase-9, caspase-7, caspase-3, PARP and DFF45 (ICAD). In contrast, separate treatments of 300 ${\mu}M$ eugenol or 3 ${\mu}M$ cisplatin for 24 h did not induce apoptosis. Our present data thus suggest that a combination therapy of eugenol and cisplatin is a potential treatment strategy for human melanoma.

Apoptotic Effects of Co-Treatment with a Chios Gum Mastic and Eugenol on G361 Human Melanoma Cells

  • Jo, Jae-Beom;Oh, Sang-Hun;Kim, In-Ryoung;Kim, Gyoo-Cheon;Kwak, Hyun-Ho;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.101-110
    • /
    • 2013
  • We investigated the synergistic apoptotic effects of co-treatments with Chios gum mastic (CGM) and eugenol on G361 human melanoma cells. An MTT assay was conducted to investigate whether this co-treatment efficiently reduces the viability of G361 cells compared with each single treatment. The induction and augmentation of apoptosis were confirmed by DNA electrophoresis, Hoechst staining, and analyses of DNA hypoploidy. Western blot analysis and immunofluorescent staining were also performed to evaluate expression and translocation of apoptosis-related proteins following CGM and eugenol co-treatment. Proteasome activity and mitochondrial membrane potential (MMP) changes were also assayed.The results indicated that the co-treatment of CGM and eugenol induces multiple pathways and processes associated with an apoptotic response in G361 cells. These include nuclear condensation, DNA fragmentation, a reduction in MMP and proteasome activity, an increase of Bax and decrease of Bcl-2, a decreased DNA content, cytochrome c release into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, and the activation of caspase-9, caspase-7, caspase-3, PARP and DFF45 (ICAD). In contrast, separate treatments of $40{\mu}g/ml$ CGM or $300{\mu}M$ eugenol for 24 hours did not induce apoptosis. Our present data thus suggest that a combination therapy of CGM and eugenol is a potential treatment strategy for human melanoma.

Lignan from Safflower Seeds Induces Apoptosis in Human Promyelocytic Leukemia Cells

  • Kim, Jae-Hi;Park, Youn-Hee;Park, Sang-Won;Yang, Eun-Kyoung;Lee, Won-Jung
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.2
    • /
    • pp.113-118
    • /
    • 2003
  • We recently extracted lignans such as matairesinol and 2-hydroxyarctigenin from safflower seeds and found that they exhibit a potent cytotoxic effect on human promyleocytic leukemia HL-60 cells. In this study, we investigated whether mechanisms of the matairesinol-induced cell death are associated with the programmed cell death, apoptosis. Matairesinol dose-dependently reduced viability of HL-60 cells with an IC/sun 50/ value of 60 $\mu$M. Staining of cells with Hoechst 33342 revealed distinct morphological features of apoptosis, such as the nuclei broken into chromatin containing fragments of various sizes in the cells exposed to 100 $\mu$M matairesinol for 24 hr. Agarose gel electrophoresis of DNA from the cells treated with matairesinol showed internucleosomal DNA degradation into oligonucleosomal sizes. DNA ladder like patterns were easily detected after treatment with matairesinol concentrations ranging from 10 to 100 $\mu$M after 24 hr. In cells treated with 100 $\mu$M matairesinol for differing time periods, the DNA ladder was detectable from 6 hr onward. A time course histogram of the DNA content analyzed by flow cytometry revealed a rapid increase in subdiploid cells and a concomitant decrease in diploid cells exposed to 100 $\mu$M matairesinol. These results indicate that matairesinol-induced HL-60 cell death was due to the DNA damage and apoptosis.

Effect of Skim Milk-Alginate Beads on Survival Rate of Bifidobacteria

  • Yu, Won-Kyu;Yim, Tae-Bin;Lee, Ki-Yong;Heo, Tae-Ryeon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.133-138
    • /
    • 2001
  • In this study, an attempt was made to increase the survival rate of bifidobacteria entrapped in alginate in the gastrointestinal tract, and to investigate the potential industrial applications, for example lyophilized capsules and yogurt. First, the protective effect of various food additives on bifidobacterial survivability was determined after exposure to simulated gastric juices and bile salts. The additives used in this study were skim milk (SM), polydextrose (PD), soy fiber (SF), yeast extract (YE), chitosan (CS), $\kappa$-carageenan ($\kappa$-C) and whey, which were added at 0.6% concentration (w/v) to 3% alginate-bifidobacterial solution. In the simulated gastric juices and bile salts, the protective effect of 0.6% skim milk-3% alginate (SM-A) beads on the survival rate of bifidobacteria proved to be higher than the other additives. Second, the hydrogen ion permeation was detected through SM-A vessel without bifidobacterial cells at different SM concentrations (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%). There were no differences in terms of the pH decrease in SM-A vessels at 0.6%, 0.8%, and 1.0% (w/v) SM concentrations. The survival rate of bifidobacteria in SM-A beads would appear to be related to the SM buffering capacity against hydrogen ions and its tendency to reduce the pore size of bead. In this experiment, the survival rate of bifidobacteria entrapped in beads containing 0.6% SM showed the highest viability after exposure to simulated gastric juices for 3h, thereby indicating that 0.6% SM is the optimum concentration fir 3% alginate bead preparation. Third, the effect of SM-A beads on the freeze-drying and yogurt storage for 10 days was investigated. SM-A beads were found to be more efficient for freeze drying and yogurt storage than untrapped cells and the alginate bead. Consequently, the survival rate of bifidobacteria entrapped in SM-A beads was increased in simulated gastric juices, bile salts and probiotic products, such as lyophilized capsules and yogurt, SM-A beads can be expected to produce high value probiotic products.

  • PDF